Moving surface grid: flow under mean curvature

This example uses a moving grid.

Mean curvature flow is a specific example of a geometric evolution equation where the evolution is governed by the mean curvature \(H\). One real-life example of this is in how soap films change over time, although it can also be applied to image processing (e.g. [MS96]). Assume we can define a reference surface \(\Gamma_0\) such that we can write the evolving surface \(\Gamma(t)\) in the form \begin{gather*} \Gamma(t) = X(t,\Gamma_0). \end{gather*} It is now possible to show that the vector valued function \(X=X(t,x)\) with \(x\in\Gamma_0\) satisfies \begin{gather*} \frac{\partial}{\partial_t}X = - H(X)\nu(X), \end{gather*} where \(H\) is the mean curvature of \(\Gamma_t\) and \(\nu\) is its outward pointing normal.

We will solve this using a finite element approach based on the following time discrete approximation from [DDE05] (with a \(\theta\)-scheme applied). \begin{align*} \int_{\Gamma^n} \big( U^{n+1} - {\rm id}\big) \cdot \varphi + \tau \int_{\Gamma^n} \big( \theta\nabla_{\Gamma^n} U^{n+1} + (1-\theta) I \big) \colon\nabla_{\Gamma^n}\varphi =0. \end{align*} Here \(U^n\) parametrizes \(\Gamma(t^{n+1})\) over \(\Gamma^n:=\Gamma(t^{n})\), \(I\) is the identity matrix, \(\tau\) is the time step and \(\theta\in[0,1]\) is a discretization parameter. eb9446c35f0744a387f26559aa18d10e

from ufl import *
from dune.ufl import Constant, DirichletBC
import dune.ufl
import dune.geometry as geometry
import dune.fem as fem
from dune.fem.plotting import plotPointData as plot
import matplotlib.pyplot as pyplot

set up polynomial order and radius of reference surface

order = 2
R0 = 2.

We begin by setting up reference domain \(\Gamma_0\) (grid), and the space on \(\Gamma_0\) that describes \(\Gamma(t)\) (space). From this we interpolate the non-spherical initial surface positions, and, then reconstruct space for the discrete solution on \(\Gamma(t)\).

from dune.fem.view import geometryGridView
from import lagrange as solutionSpace
from dune.alugrid import aluConformGrid as leafGridView
gridView = leafGridView("sphere.dgf", dimgrid=2, dimworld=3)
space = solutionSpace(gridView, dimRange=gridView.dimWorld, order=order)
u = TrialFunction(space)
v = TestFunction(space)
x = SpatialCoordinate(space)
# positions = space.interpolate(x * (1 + 0.5*sin(2*pi*x[0]*x[1])* cos(pi*x[2])), name="position")
positions = space.interpolate(x * (1 + 0.5*sin(2*pi*(x[0]+x[1]))*cos(0.25*pi*x[2])), name="position")
surface = geometryGridView(positions)
space = solutionSpace(surface, dimRange=surface.dimWorld, order=order)
solution = space.interpolate(x, name="solution")

We set up the theta scheme with \(\theta = 0.5\) (Crank-Nicolson).

from dune.fem.scheme import galerkin as solutionScheme
theta = 0.5
I = Identity(3)
dt = Constant(0, "dt")

a = (inner(u - x, v) + dt * inner(theta*grad(u) + (1 - theta)*I, grad(v))) * dx
scheme = solutionScheme(a == 0, space, solver="cg")

Now we solve the scheme in time. We first set up the initial time variables, then we plot the initial figure’s mesh, and finally we begin the loop, updating positions on each step and plotting the results side-by-side.

count = 0
t = 0.
end_time = 0.05
dt.value = 0.005

fig = pyplot.figure(figsize=(10, 10))
plot(solution, figure=(fig, 131+count%3), colorbar=False,
     gridLines="", triplot=True)

while t < end_time:
    t += scheme.model.dt
    count += 1
    if count % 4 == 0:
        plot(solution, figure=(fig, 131+count%3), colorbar=False,
             gridLines="", triplot=True)

By choosing an initial surface with boundary we can solve the soap film problem, i.e., compute the surface of minimum curvature:

referenceView = leafGridView("soap.dgf", dimgrid=2, dimworld=3)
space = solutionSpace(referenceView, dimRange=referenceView.dimWorld,

# setup deformed surface
x         = SpatialCoordinate(space)
# note that 'positions' also deforms the boundary which will then be fixed
# during the evolution by the chosen boundary conditions:
positions = space.interpolate(x * (1 + 0.5*sin(2*pi*(x[0]+x[1]))*cos(0.25*pi*x[2])), name="position")
gridView  = geometryGridView(positions)
space     = solutionSpace(gridView, dimRange=gridView.dimWorld, order=order)

u     = TrialFunction(space)
phi   = TestFunction(space)
dt    = Constant(0.01, "timeStep")
t     = Constant(0.0, "time")
endTime      = 0.4
saveInterval = 0.1

# define storage for discrete solutions
uh     = space.interpolate(x, name="uh")
uh_old = uh.copy()

# problem definition

# space form
xForm = inner(grad(u), grad(phi)) * dx

# add time discretization
form = dot(u - uh_old, phi) * dx + dt * xForm

# define Dirichlet boundary conditions - freezing the boundary
bc = DirichletBC(space,x)

Choosing solver parameters is done by passing a dictionary when constructing the scheme.

solverParameters =\
       {"newton.tolerance": 1e-9,
        "newton.linear.tolerance": 1e-11,
        "newton.linear.preconditioning.method": "jacobi",
        "newton.verbose": False,
        "newton.linear.preconditioning.iteration": 3}
# setup scheme
scheme = solutionScheme([form == 0, bc], space, solver="cg",

nextSaveTime = saveInterval
count = 0

So far we can only plot x/y coordinates using matplotlib which does not give a good impression of the surface (we use it nevertheless for showing the evolution). To get a 3d view we can use mayavi (and that can even be interactive within a jupyter notebook):

    from mayavi import mlab
    from import display
    def plot3d(uh,level):
        x, triangles =
        mlab.init_notebook("png") # use x3d for interactive plotting in the notebook
        mlab.figure(bgcolor = (1,1,1))
        s = mlab.triangular_mesh(x[:,0],x[:,1],x[:,2],triangles)
        display( s )
except ImportError:
    print("mayavi module not found so not showing plot - ignored")
    def plot3d(uh,level):

WARNING: Imported VTK version (9.3) does not match the one used
         to build the TVTK classes (9.2). This may cause problems.
         Please rebuild TVTK.

mayavi module not found so not showing plot - ignored

Now the time loop

fig = pyplot.figure(figsize=(50, 10))
plot(solution, figure=(fig, 151+count), colorbar=False,
     gridLines="", triplot=True)
while t.value < endTime:
    info = scheme.solve(target=uh)
    t.value += dt.value


    if t.value >= nextSaveTime or t.value >= endTime:
        nextSaveTime += saveInterval
        count += 1
        plot(uh, figure=(fig, 151+count), colorbar=False,
             gridLines="", triplot=True)

This page was generated from the notebook mcf_nb.ipynb and is part of the tutorial for the dune-fem python bindings DOI