|
template<class Entity , class Point > |
void | source (const Entity &entity, const Point &x, const RangeType &value, const JacobianRangeType &jacobian, RangeType &result) const |
|
template<class Entity , class Point > |
void | linearizedSource (const RangeType &uBar, const JacobianRangeType &DuBar, const Entity &entity, const Point &x, const RangeType &value, const JacobianRangeType &jacobian, RangeType &result) const |
|
void | setEntity (const Entity &entity) const |
|
bool | setIntersection (const Intersection &intersection) const |
|
void | flux (const Entity &entity, const Point &x, const RangeType &value, const JacobianRangeType &jacobian, JacobianRangeType &flux) const |
|
void | linearizedFlux (const RangeType &uBar, const JacobianRangeType &DuBar, const Entity &entity, const Point &x, const RangeType &value, const JacobianRangeType &jacobian, JacobianRangeType &flux) const |
|
void | robinFlux (const Intersection &intersection, const Point &x, const DomainType &unitOuterNormal, const RangeType &value, RangeType &result) const |
|
void | linearizedRobinFlux (const RangeType &uBar, const Intersection &intersection, const Point &x, const DomainType &unitOuterNormal, const RangeType &value, RangeType &result) const |
|
void | fluxDivergence (const Entity &entity, const Point &x, const RangeType &value, const JacobianRangeType &jacobian, const HessianRangeType &hessian, RangeType &result) const |
|
const ExpressionType & | expression () const |
| Return a const reference to the underlying expression.
|
|
ExpressionType & | expression () |
| Return a mutable reference to the underlying expression.
|
|
ExpressionType | operator* () const |
| Return a copy from of the underlying expression.
|
|
template<class FunctionSpace>
class Dune::ACFem::P_MassOperatorParts< FunctionSpace >
A simplistic non-linear example.
This models form a zero-order model of the form
\[
\int_\Omega |U|^{p-2}\,U\cdot\phi\quad\forall \phi
\]
where \(U\) is the unknown und \(ß\phi\) denotes the test functions. This is the formal first variation of the functional
\[
U\mapsto \int_\Omega |U|^p
\]