|
template<class Entity , class Point > |
void | source (const Entity &entity, const Point &x, const RangeType &value, const JacobianRangeType &jacobian, RangeType &result) const |
| The zero-order term as function of local coordinates. More...
|
|
template<class Entity , class Point > |
void | linearizedSource (const RangeType &uBar, const JacobianRangeType &DuBar, const Entity &entity, const Point &x, const RangeType &value, const JacobianRangeType &jacobian, RangeType &result) const |
| The linearized source term as function of local coordinates. More...
|
|
void | setEntity (const Entity &entity) const |
|
bool | setIntersection (const Intersection &intersection) const |
|
void | flux (const Entity &entity, const Point &x, const RangeType &value, const JacobianRangeType &jacobian, JacobianRangeType &flux) const |
|
void | linearizedFlux (const RangeType &uBar, const JacobianRangeType &DuBar, const Entity &entity, const Point &x, const RangeType &value, const JacobianRangeType &jacobian, JacobianRangeType &flux) const |
|
void | robinFlux (const Intersection &intersection, const Point &x, const DomainType &unitOuterNormal, const RangeType &value, RangeType &result) const |
|
void | linearizedRobinFlux (const RangeType &uBar, const Intersection &intersection, const Point &x, const DomainType &unitOuterNormal, const RangeType &value, RangeType &result) const |
|
void | fluxDivergence (const Entity &entity, const Point &x, const RangeType &value, const JacobianRangeType &jacobian, const HessianRangeType &hessian, RangeType &result) const |
|
const ExpressionType & | expression () const |
| Return a const reference to the underlying expression.
|
|
ExpressionType & | expression () |
| Return a mutable reference to the underlying expression.
|
|
ExpressionType | operator* () const |
| Return a copy from of the underlying expression.
|
|
template<class FunctionSpace>
class Dune::ACFem::IncompressibleSelfTransportOperatorParts< FunctionSpace >
Define a model for the "Navier-Stokes" non-lineariry.
This fragment models the change in momentum caused by the transport via the velocity field of the fluid on the fluid itself. This forms half of the so called "material derivative" for time-dependent flows and the entire material derivative for stationary flow problems. The "material derivative" of the velocity field of the fluid is the change of the velocity measured by an observier moving with the fluid.
In formulas: this fragment implements the non-linear "source" term
\[
\int_\Omega U_i\,\partial_i U_j\,\phi_j
\]
Of course, the formula uses sum-convention. There is also another variant available which move the derivative away from U to the test-function at the cost of introducing a boundary integral.
- See also
- FluidSelfTransportOperatorParts, DeformationTensorOperatorParts, Transport/Advection Models