Dune Core Modules (2.8.0)

poweriteration.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_ISTL_EIGENVALUE_POWERITERATION_HH
4#define DUNE_ISTL_EIGENVALUE_POWERITERATION_HH
5
6#include <cstddef> // provides std::size_t
7#include <cmath> // provides std::sqrt, std::abs
8
9#include <type_traits> // provides std::is_same
10#include <iostream> // provides std::cout, std::endl
11#include <limits> // provides std::numeric_limits
12#include <ios> // provides std::left, std::ios::left
13#include <iomanip> // provides std::setw, std::resetiosflags
14#include <memory> // provides std::unique_ptr
15#include <string> // provides std::string
16
17#include <dune/common/exceptions.hh> // provides DUNE_THROW(...)
18
19#include <dune/istl/blocklevel.hh> // provides Dune::blockLevel
20#include <dune/istl/operators.hh> // provides Dune::LinearOperator
21#include <dune/istl/solvercategory.hh> // provides Dune::SolverCategory::sequential
22#include <dune/istl/solvertype.hh> // provides Dune::IsDirectSolver
23#include <dune/istl/operators.hh> // provides Dune::MatrixAdapter
24#include <dune/istl/istlexception.hh> // provides Dune::ISTLError
25#include <dune/istl/io.hh> // provides Dune::printvector(...)
26#include <dune/istl/solvers.hh> // provides Dune::InverseOperatorResult
27
28namespace Dune
29{
30
35 namespace Impl {
43 template <class X, class Y = X>
44 class ScalingLinearOperator : public Dune::LinearOperator<X,Y>
45 {
46 public:
47 typedef X domain_type;
48 typedef Y range_type;
49 typedef typename X::field_type field_type;
50
51 ScalingLinearOperator (field_type immutable_scaling,
52 const field_type& mutable_scaling)
53 : immutable_scaling_(immutable_scaling),
54 mutable_scaling_(mutable_scaling)
55 {}
56
57 virtual void apply (const X& x, Y& y) const
58 {
59 y = x;
60 y *= immutable_scaling_*mutable_scaling_;
61 }
62
63 virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const
64 {
65 X temp(x);
66 temp *= immutable_scaling_*mutable_scaling_;
67 y.axpy(alpha,temp);
68 }
69
72 {
74 }
75
76 protected:
77 const field_type immutable_scaling_;
78 const field_type& mutable_scaling_;
79 };
80
81
90 template <class OP1, class OP2>
91 class LinearOperatorSum
92 : public Dune::LinearOperator<typename OP1::domain_type,
93 typename OP1::range_type>
94 {
95 public:
96 typedef typename OP1::domain_type domain_type;
97 typedef typename OP1::range_type range_type;
98 typedef typename domain_type::field_type field_type;
99
100 LinearOperatorSum (const OP1& op1, const OP2& op2)
101 : op1_(op1), op2_(op2)
102 {
103 static_assert(std::is_same<typename OP2::domain_type,domain_type>::value,
104 "Domain type of both operators doesn't match!");
105 static_assert(std::is_same<typename OP2::range_type,range_type>::value,
106 "Range type of both operators doesn't match!");
107 }
108
109 virtual void apply (const domain_type& x, range_type& y) const
110 {
111 op1_.apply(x,y);
112 op2_.applyscaleadd(1.0,x,y);
113 }
114
115 virtual void applyscaleadd (field_type alpha,
116 const domain_type& x, range_type& y) const
117 {
118 range_type temp(y);
119 op1_.apply(x,temp);
120 op2_.applyscaleadd(1.0,x,temp);
121 y.axpy(alpha,temp);
122 }
123
125 virtual SolverCategory::Category category() const
126 {
128 }
129
130 protected:
131 const OP1& op1_;
132 const OP2& op2_;
133 };
134 } // end namespace Impl
135
172 template <typename BCRSMatrix, typename BlockVector>
174 {
175 protected:
176 // Type definitions for type of iteration operator (m_ - mu_*I)
179 typedef Impl::ScalingLinearOperator<BlockVector> ScalingOperator;
180 typedef Impl::LinearOperatorSum<MatrixOperator,ScalingOperator> OperatorSum;
181
182 public:
185
187 typedef OperatorSum IterationOperator;
188
189 public:
205 const unsigned int nIterationsMax = 1000,
206 const unsigned int verbosity_level = 0)
207 : m_(m), nIterationsMax_(nIterationsMax),
208 verbosity_level_(verbosity_level),
209 mu_(0.0),
210 matrixOperator_(m_),
211 scalingOperator_(-1.0,mu_),
212 itOperator_(matrixOperator_,scalingOperator_),
213 nIterations_(0),
214 title_(" PowerIteration_Algorithms: "),
215 blank_(title_.length(),' ')
216 {
217 // assert that BCRSMatrix type has blocklevel 2
218 static_assert
219 (blockLevel<BCRSMatrix>() == 2,
220 "Only BCRSMatrices with blocklevel 2 are supported.");
221
222 // assert that BCRSMatrix type has square blocks
223 static_assert
224 (BCRSMatrix::block_type::rows == BCRSMatrix::block_type::cols,
225 "Only BCRSMatrices with square blocks are supported.");
226
227 // assert that m_ is square
228 const int nrows = m_.M() * BCRSMatrix::block_type::rows;
229 const int ncols = m_.N() * BCRSMatrix::block_type::cols;
230 if (nrows != ncols)
231 DUNE_THROW(Dune::ISTLError,"Matrix is not square ("
232 << nrows << "x" << ncols << ").");
233 }
234
239
245
258 inline void applyPowerIteration (const Real& epsilon,
259 BlockVector& x, Real& lambda) const
260 {
261 // print verbosity information
262 if (verbosity_level_ > 0)
263 std::cout << title_
264 << "Performing power iteration approximating "
265 << "the dominant eigenvalue." << std::endl;
266
267 // allocate memory for auxiliary variables
268 BlockVector y(x);
269 BlockVector temp(x);
270
271 // perform power iteration
272 x *= (1.0 / x.two_norm());
273 m_.mv(x,y);
275 nIterations_ = 0;
276 while (r_norm > epsilon)
277 {
278 // update and check number of iterations
279 if (++nIterations_ > nIterationsMax_)
280 DUNE_THROW(Dune::ISTLError,"Power iteration did not converge "
281 << "in " << nIterationsMax_ << " iterations "
282 << "(║residual║_2 = " << r_norm << ", epsilon = "
283 << epsilon << ").");
284
285 // do one iteration of the power iteration algorithm
286 // (use that y = m_ * x)
287 x = y;
288 x *= (1.0 / y.two_norm());
289
290 // get approximated eigenvalue lambda via the Rayleigh quotient
291 m_.mv(x,y);
292 lambda = x * y;
293
294 // get norm of residual (use that y = m_ * x)
295 temp = y;
296 temp.axpy(-lambda,x);
297 r_norm = temp.two_norm();
298
299 // print verbosity information
300 if (verbosity_level_ > 1)
301 std::cout << blank_ << std::left
302 << "iteration " << std::setw(3) << nIterations_
303 << " (║residual║_2 = " << std::setw(11) << r_norm
304 << "): λ = " << lambda << std::endl
305 << std::resetiosflags(std::ios::left);
306 }
307
308 // print verbosity information
309 if (verbosity_level_ > 0)
310 {
311 std::cout << blank_ << "Result ("
312 << "#iterations = " << nIterations_ << ", "
313 << "║residual║_2 = " << r_norm << "): "
314 << "λ = " << lambda << std::endl;
315 if (verbosity_level_ > 2)
316 {
317 // print approximated eigenvector via DUNE-ISTL I/O methods
318 Dune::printvector(std::cout,x,blank_+"x",blank_+"row");
319 }
320 }
321 }
322
351 template <typename ISTLLinearSolver,
352 bool avoidLinSolverCrime = false>
353 inline void applyInverseIteration (const Real& epsilon,
354 ISTLLinearSolver& solver,
355 BlockVector& x, Real& lambda) const
356 {
357 constexpr Real gamma = 0.0;
358 applyInverseIteration(gamma,epsilon,solver,x,lambda);
359 }
360
390 template <typename ISTLLinearSolver,
391 bool avoidLinSolverCrime = false>
392 inline void applyInverseIteration (const Real& gamma,
393 const Real& epsilon,
394 ISTLLinearSolver& solver,
395 BlockVector& x, Real& lambda) const
396 {
397 // print verbosity information
398 if (verbosity_level_ > 0)
399 {
400 std::cout << title_;
401 if (gamma == 0.0)
402 std::cout << "Performing inverse iteration approximating "
403 << "the least dominant eigenvalue." << std::endl;
404 else
405 std::cout << "Performing inverse iteration with shift "
406 << "gamma = " << gamma << " approximating the "
407 << "eigenvalue closest to gamma." << std::endl;
408 }
409
410 // initialize iteration operator,
411 // initialize iteration matrix when needed
412 updateShiftMu(gamma,solver);
413
414 // allocate memory for linear solver statistics
415 Dune::InverseOperatorResult solver_statistics;
416
417 // allocate memory for auxiliary variables
418 BlockVector y(x);
419 Real y_norm;
420 BlockVector temp(x);
421
422 // perform inverse iteration with shift
423 x *= (1.0 / x.two_norm());
425 nIterations_ = 0;
426 while (r_norm > epsilon)
427 {
428 // update and check number of iterations
429 if (++nIterations_ > nIterationsMax_)
430 DUNE_THROW(Dune::ISTLError,"Inverse iteration "
431 << (gamma != 0.0 ? "with shift " : "") << "did not "
432 << "converge in " << nIterationsMax_ << " iterations "
433 << "(║residual║_2 = " << r_norm << ", epsilon = "
434 << epsilon << ").");
435
436 // do one iteration of the inverse iteration with shift algorithm,
437 // part 1: solve (m_ - gamma*I) * y = x for y
438 // (protect x from being changed)
439 temp = x;
440 solver.apply(y,temp,solver_statistics);
441
442 // get norm of y
443 y_norm = y.two_norm();
444
445 // compile time switch between accuracy and efficiency
446 if (avoidLinSolverCrime)
447 {
448 // get approximated eigenvalue lambda via the Rayleigh quotient
449 // (use that x_new = y / y_norm)
450 m_.mv(y,temp);
451 lambda = (y * temp) / (y_norm * y_norm);
452
453 // get norm of residual
454 // (use that x_new = y / y_norm, additionally use that temp = m_ * y)
455 temp.axpy(-lambda,y);
456 r_norm = temp.two_norm() / y_norm;
457 }
458 else
459 {
460 // get approximated eigenvalue lambda via the Rayleigh quotient
461 // (use that x_new = y / y_norm and use that (m_ - gamma*I) * y = x)
462 lambda = gamma + (y * x) / (y_norm * y_norm);
463
464 // get norm of residual
465 // (use that x_new = y / y_norm and use that (m_ - gamma*I) * y = x)
466 temp = x; temp.axpy(gamma-lambda,y);
467 r_norm = temp.two_norm() / y_norm;
468 }
469
470 // do one iteration of the inverse iteration with shift algorithm,
471 // part 2: update x
472 x = y;
473 x *= (1.0 / y_norm);
474
475 // print verbosity information
476 if (verbosity_level_ > 1)
477 std::cout << blank_ << std::left
478 << "iteration " << std::setw(3) << nIterations_
479 << " (║residual║_2 = " << std::setw(11) << r_norm
480 << "): λ = " << lambda << std::endl
481 << std::resetiosflags(std::ios::left);
482 }
483
484 // print verbosity information
485 if (verbosity_level_ > 0)
486 {
487 std::cout << blank_ << "Result ("
488 << "#iterations = " << nIterations_ << ", "
489 << "║residual║_2 = " << r_norm << "): "
490 << "λ = " << lambda << std::endl;
491 if (verbosity_level_ > 2)
492 {
493 // print approximated eigenvector via DUNE-ISTL I/O methods
494 Dune::printvector(std::cout,x,blank_+"x",blank_+"row");
495 }
496 }
497 }
498
529 template <typename ISTLLinearSolver,
530 bool avoidLinSolverCrime = false>
531 inline void applyRayleighQuotientIteration (const Real& epsilon,
532 ISTLLinearSolver& solver,
533 BlockVector& x, Real& lambda) const
534 {
535 // print verbosity information
536 if (verbosity_level_ > 0)
537 std::cout << title_
538 << "Performing Rayleigh quotient iteration for "
539 << "estimated eigenvalue " << lambda << "." << std::endl;
540
541 // allocate memory for linear solver statistics
542 Dune::InverseOperatorResult solver_statistics;
543
544 // allocate memory for auxiliary variables
545 BlockVector y(x);
546 Real y_norm;
547 Real lambda_update;
548 BlockVector temp(x);
549
550 // perform Rayleigh quotient iteration
551 x *= (1.0 / x.two_norm());
553 nIterations_ = 0;
554 while (r_norm > epsilon)
555 {
556 // update and check number of iterations
557 if (++nIterations_ > nIterationsMax_)
558 DUNE_THROW(Dune::ISTLError,"Rayleigh quotient iteration did not "
559 << "converge in " << nIterationsMax_ << " iterations "
560 << "(║residual║_2 = " << r_norm << ", epsilon = "
561 << epsilon << ").");
562
563 // update iteration operator,
564 // update iteration matrix when needed
565 updateShiftMu(lambda,solver);
566
567 // do one iteration of the Rayleigh quotient iteration algorithm,
568 // part 1: solve (m_ - lambda*I) * y = x for y
569 // (protect x from being changed)
570 temp = x;
571 solver.apply(y,temp,solver_statistics);
572
573 // get norm of y
574 y_norm = y.two_norm();
575
576 // compile time switch between accuracy and efficiency
577 if (avoidLinSolverCrime)
578 {
579 // get approximated eigenvalue lambda via the Rayleigh quotient
580 // (use that x_new = y / y_norm)
581 m_.mv(y,temp);
582 lambda = (y * temp) / (y_norm * y_norm);
583
584 // get norm of residual
585 // (use that x_new = y / y_norm, additionally use that temp = m_ * y)
586 temp.axpy(-lambda,y);
587 r_norm = temp.two_norm() / y_norm;
588 }
589 else
590 {
591 // get approximated eigenvalue lambda via the Rayleigh quotient
592 // (use that x_new = y / y_norm and use that (m_ - lambda_old*I) * y = x)
593 lambda_update = (y * x) / (y_norm * y_norm);
594 lambda += lambda_update;
595
596 // get norm of residual
597 // (use that x_new = y / y_norm and use that (m_ - lambda_old*I) * y = x)
598 temp = x; temp.axpy(-lambda_update,y);
599 r_norm = temp.two_norm() / y_norm;
600 }
601
602 // do one iteration of the Rayleigh quotient iteration algorithm,
603 // part 2: update x
604 x = y;
605 x *= (1.0 / y_norm);
606
607 // print verbosity information
608 if (verbosity_level_ > 1)
609 std::cout << blank_ << std::left
610 << "iteration " << std::setw(3) << nIterations_
611 << " (║residual║_2 = " << std::setw(11) << r_norm
612 << "): λ = " << lambda << std::endl
613 << std::resetiosflags(std::ios::left);
614 }
615
616 // print verbosity information
617 if (verbosity_level_ > 0)
618 {
619 std::cout << blank_ << "Result ("
620 << "#iterations = " << nIterations_ << ", "
621 << "║residual║_2 = " << r_norm << "): "
622 << "λ = " << lambda << std::endl;
623 if (verbosity_level_ > 2)
624 {
625 // print approximated eigenvector via DUNE-ISTL I/O methods
626 Dune::printvector(std::cout,x,blank_+"x",blank_+"row");
627 }
628 }
629 }
630
687 template <typename ISTLLinearSolver,
688 bool avoidLinSolverCrime = false>
689 inline void applyTLIMEIteration (const Real& gamma, const Real& eta,
690 const Real& epsilon,
691 ISTLLinearSolver& solver,
692 const Real& delta, const std::size_t& m,
693 bool& extrnl,
694 BlockVector& x, Real& lambda) const
695 {
696 // use same variable names as in [Szyld, 1988]
697 BlockVector& x_s = x;
698 Real& mu_s = lambda;
699
700 // print verbosity information
701 if (verbosity_level_ > 0)
702 std::cout << title_
703 << "Performing TLIME iteration for "
704 << "estimated eigenvalue in the "
705 << "interval (" << gamma - eta << ","
706 << gamma + eta << ")." << std::endl;
707
708 // allocate memory for linear solver statistics
709 Dune::InverseOperatorResult solver_statistics;
710
711 // allocate memory for auxiliary variables
712 bool doRQI;
713 Real mu;
714 BlockVector y(x_s);
715 Real omega;
716 Real mu_s_old;
717 Real mu_s_update;
718 BlockVector temp(x_s);
719 Real q_norm, r_norm;
720
721 // perform TLIME iteration
722 x_s *= (1.0 / x_s.two_norm());
723 extrnl = true;
724 doRQI = false;
726 nIterations_ = 0;
727 while (r_norm > epsilon)
728 {
729 // update and check number of iterations
730 if (++nIterations_ > nIterationsMax_)
731 DUNE_THROW(Dune::ISTLError,"TLIME iteration did not "
732 << "converge in " << nIterationsMax_
733 << " iterations (║residual║_2 = " << r_norm
734 << ", epsilon = " << epsilon << ").");
735
736 // set shift for next iteration according to inverse iteration
737 // with shift (II) resp. Rayleigh quotient iteration (RQI)
738 if (doRQI)
739 mu = mu_s;
740 else
741 mu = gamma;
742
743 // update II/RQI iteration operator,
744 // update II/RQI iteration matrix when needed
745 updateShiftMu(mu,solver);
746
747 // do one iteration of the II/RQI algorithm,
748 // part 1: solve (m_ - mu*I) * y = x for y
749 temp = x_s;
750 solver.apply(y,temp,solver_statistics);
751
752 // do one iteration of the II/RQI algorithm,
753 // part 2: compute omega
754 omega = (1.0 / y.two_norm());
755
756 // backup the old Rayleigh quotient
757 mu_s_old = mu_s;
758
759 // compile time switch between accuracy and efficiency
760 if (avoidLinSolverCrime)
761 {
762 // update the Rayleigh quotient mu_s, i.e. the approximated eigenvalue
763 // (use that x_new = y * omega)
764 m_.mv(y,temp);
765 mu_s = (y * temp) * (omega * omega);
766
767 // get norm of "the residual with respect to the shift used by II",
768 // use normal representation of q
769 // (use that x_new = y * omega, use that temp = m_ * y)
770 temp.axpy(-gamma,y);
771 q_norm = temp.two_norm() * omega;
772
773 // get norm of "the residual with respect to the Rayleigh quotient"
774 r_norm = q_norm*q_norm - (gamma-mu_s)*(gamma-mu_s);
775 // prevent that truncation errors invalidate the norm
776 // (we don't want to calculate sqrt of a negative number)
777 if (r_norm >= 0)
778 {
779 // use relation between the norms of r and q for efficiency
780 r_norm = std::sqrt(r_norm);
781 }
782 else
783 {
784 // use relation between r and q
785 // (use that x_new = y * omega, use that temp = (m_ - gamma*I) * y = q / omega)
786 temp.axpy(gamma-mu_s,y);
787 r_norm = temp.two_norm() * omega;
788 }
789 }
790 else
791 {
792 // update the Rayleigh quotient mu_s, i.e. the approximated eigenvalue
793 if (!doRQI)
794 {
795 // (use that x_new = y * omega, additionally use that (m_ - gamma*I) * y = x_s)
796 mu_s = gamma + (y * x_s) * (omega * omega);
797 }
798 else
799 {
800 // (use that x_new = y * omega, additionally use that (m_ - mu_s_old*I) * y = x_s)
801 mu_s_update = (y * x_s) * (omega * omega);
802 mu_s += mu_s_update;
803 }
804
805 // get norm of "the residual with respect to the shift used by II"
806 if (!doRQI)
807 {
808 // use special representation of q in the II case
809 // (use that x_new = y * omega, additionally use that (m_ - gamma*I) * y = x_s)
810 q_norm = omega;
811 }
812 else
813 {
814 // use special representation of q in the RQI case
815 // (use that x_new = y * omega, additionally use that (m_ - mu_s_old*I) * y = x_s)
816 temp = x_s; temp.axpy(mu_s-gamma,y);
817 q_norm = temp.two_norm() * omega;
818 }
819
820 // get norm of "the residual with respect to the Rayleigh quotient"
821 // don't use efficient relation between the norms of r and q, as
822 // this relation seems to yield a less accurate r_norm in the case
823 // where linear solver crime is admitted
824 if (!doRQI)
825 {
826 // (use that x_new = y * omega and use that (m_ - gamma*I) * y = x_s)
827 temp = x_s; temp.axpy(gamma-lambda,y);
828 r_norm = temp.two_norm() * omega;
829 }
830 else
831 {
832 // (use that x_new = y * omega and use that (m_ - mu_s_old*I) * y = x_s)
833 temp = x_s; temp.axpy(-mu_s_update,y);
834 r_norm = temp.two_norm() * omega;
835 }
836 }
837
838 // do one iteration of the II/RQI algorithm,
839 // part 3: update x
840 x_s = y; x_s *= omega;
841
842 // // for relative residual norm mode, scale with mu_s^{-1}
843 // r_norm /= std::abs(mu_s);
844
845 // print verbosity information
846 if (verbosity_level_ > 1)
847 std::cout << blank_ << "iteration "
848 << std::left << std::setw(3) << nIterations_
849 << " (" << (doRQI ? "RQI," : "II, ")
850 << " " << (doRQI ? "—>" : " ") << " "
851 << "║r║_2 = " << std::setw(11) << r_norm
852 << ", " << (doRQI ? " " : "—>") << " "
853 << "║q║_2 = " << std::setw(11) << q_norm
854 << "): λ = " << lambda << std::endl
855 << std::resetiosflags(std::ios::left);
856
857 // check if the eigenvalue closest to gamma lies in J
858 if (!doRQI && q_norm < eta)
859 {
860 // J is not free of eigenvalues
861 extrnl = false;
862
863 // by theory we know now that mu_s also lies in J
864 assert(std::abs(mu_s-gamma) < eta);
865
866 // switch to RQI
867 doRQI = true;
868 }
869
870 // revert to II if J is not free of eigenvalues but
871 // at some point mu_s falls back again outside J
872 if (!extrnl && doRQI && std::abs(mu_s-gamma) >= eta)
873 doRQI = false;
874
875 // if eigenvalue closest to gamma does not lie in J use RQI
876 // solely to accelerate the convergence to this eigenvalue
877 // when II has become stationary
878 if (extrnl && !doRQI)
879 {
880 // switch to RQI if the relative change of the Rayleigh
881 // quotient indicates that II has become stationary
882 if (nIterations_ >= m &&
883 std::abs(mu_s - mu_s_old) / std::abs(mu_s) < delta)
884 doRQI = true;
885 }
886 }
887
888 // // compute final residual and lambda again (paranoia....)
889 // m_.mv(x_s,temp);
890 // mu_s = x_s * temp;
891 // temp.axpy(-mu_s,x_s);
892 // r_norm = temp.two_norm();
893 // // r_norm /= std::abs(mu_s);
894
895 // print verbosity information
896 if (verbosity_level_ > 0)
897 {
898 if (extrnl)
899 std::cout << blank_ << "Interval "
900 << "(" << gamma - eta << "," << gamma + eta
901 << ") is free of eigenvalues, approximating "
902 << "the closest eigenvalue." << std::endl;
903 std::cout << blank_ << "Result ("
904 << "#iterations = " << nIterations_ << ", "
905 << "║residual║_2 = " << r_norm << "): "
906 << "λ = " << lambda << std::endl;
907 if (verbosity_level_ > 2)
908 {
909 // print approximated eigenvector via DUNE-ISTL I/O methods
910 Dune::printvector(std::cout,x,blank_+"x",blank_+"row");
911 }
912 }
913 }
914
924 {
925 // return iteration operator
926 return itOperator_;
927 }
928
943 inline const BCRSMatrix& getIterationMatrix () const
944 {
945 // create iteration matrix on demand
946 if (!itMatrix_)
947 itMatrix_ = std::make_unique<BCRSMatrix>(m_);
948
949 // return iteration matrix
950 return *itMatrix_;
951 }
952
957 inline unsigned int getIterationCount () const
958 {
959 if (nIterations_ == 0)
960 DUNE_THROW(Dune::ISTLError,"No algorithm applied, yet.");
961
962 return nIterations_;
963 }
964
965 protected:
980 template <typename ISTLLinearSolver>
981 inline void updateShiftMu (const Real& mu,
982 ISTLLinearSolver& solver) const
983 {
984 // do nothing if new shift equals the old one
985 if (mu == mu_) return;
986
987 // update shift mu_, i.e. update iteration operator
988 mu_ = mu;
989
990 // update iteration matrix when needed
991 if (itMatrix_)
992 {
993 // iterate over entries in iteration matrix diagonal
994 constexpr int rowBlockSize = BCRSMatrix::block_type::rows;
995 constexpr int colBlockSize = BCRSMatrix::block_type::cols;
996 for (typename BCRSMatrix::size_type i = 0;
997 i < itMatrix_->M()*rowBlockSize; ++i)
998 {
999 // access m_[i,i] where i is the flat index of a row/column
1000 const Real& m_entry = m_
1001 [i/rowBlockSize][i/colBlockSize][i%rowBlockSize][i%colBlockSize];
1002 // access *itMatrix[i,i] where i is the flat index of a row/column
1003 Real& entry = (*itMatrix_)
1004 [i/rowBlockSize][i/colBlockSize][i%rowBlockSize][i%colBlockSize];
1005 // change current entry in iteration matrix diagonal
1006 entry = m_entry - mu_;
1007 }
1008 // notify linear solver about change of the iteration matrix object
1010 (solver,*itMatrix_);
1011 }
1012 }
1013
1014 protected:
1015 // parameters related to iterative eigenvalue algorithms
1016 const BCRSMatrix& m_;
1017 const unsigned int nIterationsMax_;
1018
1019 // verbosity setting
1020 const unsigned int verbosity_level_;
1021
1022 // shift mu_ used by iteration operator/matrix (m_ - mu_*I)
1023 mutable Real mu_;
1024
1025 // iteration operator (m_ - mu_*I), passing shift mu_ by reference
1026 const MatrixOperator matrixOperator_;
1027 const ScalingOperator scalingOperator_;
1028 OperatorSum itOperator_;
1029
1030 // iteration matrix (m_ - mu_*I), provided on demand when needed
1031 // (e.g. for preconditioning)
1032 mutable std::unique_ptr<BCRSMatrix> itMatrix_;
1033
1034 // memory for storing temporary variables (mutable as they shall
1035 // just be effectless auxiliary variables of the const apply*(...)
1036 // methods)
1037 mutable unsigned int nIterations_;
1038
1039 // constants for printing verbosity information
1040 const std::string title_;
1041 const std::string blank_;
1042 };
1043
1046} // namespace Dune
1047
1048#endif // DUNE_ISTL_EIGENVALUE_POWERITERATION_HH
Helper functions for determining the vector/matrix block level.
A sparse block matrix with compressed row storage.
Definition: bcrsmatrix.hh:464
A::size_type size_type
The type for the index access and the size.
Definition: bcrsmatrix.hh:498
size_type M() const
number of columns (counted in blocks)
Definition: bcrsmatrix.hh:1976
void mv(const X &x, Y &y) const
y = A x
Definition: bcrsmatrix.hh:1610
size_type N() const
number of rows (counted in blocks)
Definition: bcrsmatrix.hh:1970
A vector of blocks with memory management.
Definition: bvector.hh:393
typename Imp::BlockTraits< B >::field_type field_type
export the type representing the field
Definition: bvector.hh:399
derive error class from the base class in common
Definition: istlexception.hh:17
A linear operator.
Definition: operators.hh:65
X::field_type field_type
The field type of the operator.
Definition: operators.hh:72
virtual void applyscaleadd(field_type alpha, const X &x, X &y) const=0
apply operator to x, scale and add:
virtual SolverCategory::Category category() const=0
Category of the linear operator (see SolverCategory::Category)
X range_type
The type of the range of the operator.
Definition: operators.hh:70
virtual void apply(const X &x, X &y) const=0
apply operator to x: The input vector is consistent and the output must also be consistent on the in...
X domain_type
The type of the domain of the operator.
Definition: operators.hh:68
Adapter to turn a matrix into a linear operator.
Definition: operators.hh:135
Iterative eigenvalue algorithms based on power iteration.
Definition: poweriteration.hh:174
PowerIteration_Algorithms(const PowerIteration_Algorithms &)=delete
void applyInverseIteration(const Real &epsilon, ISTLLinearSolver &solver, BlockVector &x, Real &lambda) const
Perform the inverse iteration algorithm to compute an approximation lambda of the least dominant (i....
Definition: poweriteration.hh:353
void applyTLIMEIteration(const Real &gamma, const Real &eta, const Real &epsilon, ISTLLinearSolver &solver, const Real &delta, const std::size_t &m, bool &extrnl, BlockVector &x, Real &lambda) const
Perform the "two-level iterative method for eigenvalue calculations (TLIME)" iteration algorit...
Definition: poweriteration.hh:689
IterationOperator & getIterationOperator()
Return the iteration operator (m_ - mu_*I).
Definition: poweriteration.hh:923
PowerIteration_Algorithms(const BCRSMatrix &m, const unsigned int nIterationsMax=1000, const unsigned int verbosity_level=0)
Construct from required parameters.
Definition: poweriteration.hh:204
void applyPowerIteration(const Real &epsilon, BlockVector &x, Real &lambda) const
Perform the power iteration algorithm to compute an approximation lambda of the dominant (i....
Definition: poweriteration.hh:258
OperatorSum IterationOperator
Type of iteration operator (m_ - mu_*I)
Definition: poweriteration.hh:187
void applyRayleighQuotientIteration(const Real &epsilon, ISTLLinearSolver &solver, BlockVector &x, Real &lambda) const
Perform the Rayleigh quotient iteration algorithm to compute an approximation lambda of an eigenvalue...
Definition: poweriteration.hh:531
void applyInverseIteration(const Real &gamma, const Real &epsilon, ISTLLinearSolver &solver, BlockVector &x, Real &lambda) const
Perform the inverse iteration with shift algorithm to compute an approximation lambda of the eigenval...
Definition: poweriteration.hh:392
void updateShiftMu(const Real &mu, ISTLLinearSolver &solver) const
Update shift mu_, i.e. update iteration operator/matrix (m_ - mu_*I).
Definition: poweriteration.hh:981
PowerIteration_Algorithms & operator=(const PowerIteration_Algorithms &)=delete
unsigned int getIterationCount() const
Return the number of iterations in last application of an algorithm.
Definition: poweriteration.hh:957
const BCRSMatrix & getIterationMatrix() const
Return the iteration matrix (m_ - mu_*I), provided on demand when needed (e.g. for direct solvers or ...
Definition: poweriteration.hh:943
BlockVector::field_type Real
Type of underlying field.
Definition: poweriteration.hh:184
Helper class for notifying a DUNE-ISTL linear solver about a change of the iteration matrix object in...
Definition: solver.hh:520
A few common exception classes.
Some generic functions for pretty printing vectors and matrices.
#define DUNE_THROW(E, m)
Definition: exceptions.hh:216
void printvector(std::ostream &s, const V &v, std::string title, std::string rowtext, int columns=1, int width=10, int precision=2)
Print an ISTL vector.
Definition: io.hh:86
auto max(ADLTag< 0 >, const V &v1, const V &v2)
implements binary Simd::max()
Definition: defaults.hh:79
Dune namespace.
Definition: alignedallocator.hh:11
Define general, extensible interface for operators. The available implementation wraps a matrix.
Implementations of the inverse operator interface.
Templates characterizing the type of a solver.
Statistics about the application of an inverse operator.
Definition: solver.hh:46
Category
Definition: solvercategory.hh:21
@ sequential
Category for sequential solvers.
Definition: solvercategory.hh:23
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 22, 23:30, 2024)