3#ifndef DUNE_ORTHONORMALCOMPUTE_HH
4#define DUNE_ORTHONORMALCOMPUTE_HH
17#include <dune/localfunctions/utility/field.hh>
18#include <dune/localfunctions/utility/lfematrix.hh>
19#include <dune/localfunctions/utility/monomialbasis.hh>
20#include <dune/localfunctions/utility/multiindex.hh>
25 template<
class scalar_t >
29 for(
int j = start; j <= end; ++j )
39 template< Dune::GeometryType::Id geometryId >
43 static constexpr int dimension = geometry.
dim();
45 template<
int dim,
class scalar_t >
46 static int compute (
const Dune::MultiIndex< dim, scalar_t > &alpha,
47 scalar_t &p, scalar_t &q )
49 return compute(alpha, p, q, std::make_integer_sequence<int,dimension>{});
52 template<
int dim,
class scalar_t ,
int ...ints>
53 static int compute (
const Dune::MultiIndex< dim, scalar_t > &alpha,
54 scalar_t &p, scalar_t &q, std::integer_sequence<int,ints...> intS)
60 ((computeIntegral<ints>(alpha,p,q,ord)),...);
65 template<
int step,
int dim,
class scalar_t >
66 static void computeIntegral (
const Dune::MultiIndex< dim, scalar_t > &alpha,
67 scalar_t &p, scalar_t &q,
int& ord)
69 int i = alpha.z( step );
78 p *= factorial< scalar_t >( 1, i );
79 q *= factorial< scalar_t >( step+1 + ord, step+1 + ord + i );
90 template< Dune::GeometryType::Id geometryId,
class scalar_t >
92 :
public Dune::LFEMatrix< scalar_t >
94 typedef ONBMatrix< geometryId, scalar_t > This;
95 typedef Dune::LFEMatrix< scalar_t > Base;
98 typedef std::vector< scalar_t > vec_t;
99 typedef Dune::LFEMatrix< scalar_t > mat_t;
101 explicit ONBMatrix (
unsigned int order )
105 constexpr unsigned int dim = geometry.
dim();
106 typedef Dune::MultiIndex< dim, scalar_t > MI;
107 Dune::StandardMonomialBasis< dim, MI > basis( order );
108 const std::size_t size = basis.size();
109 std::vector< Dune::FieldVector< MI, 1 > > y( size );
111 for(
unsigned int i = 0; i < dim; ++i )
113 basis.evaluate( x, y );
116 Base::resize( size, size );
117 S.resize( size, size );
122 for( std::size_t i = 0; i < size; ++i )
124 for( std::size_t j = 0; j < size; ++j )
126 Integral< geometryId >::compute( y[ i ][ 0 ] * y[ j ][ 0 ], p, q );
136 template<
class Vector >
137 void row (
unsigned int row, Vector &vec )
const
140 assert( row < Base::cols() );
141 for( std::size_t i = 0; i < Base::rows(); ++i )
146 void sprod (
int col1,
int col2, scalar_t &ret )
149 for(
int k = 0; k <= col1; ++k )
151 for(
int l = 0; l <=col2; ++l )
152 ret += Base::operator()( l, col2 ) * S( l, k ) * Base::operator()( k, col1 );
156 void vmul ( std::size_t col, std::size_t rowEnd,
const scalar_t &s )
158 for( std::size_t i = 0; i <= rowEnd; ++i )
159 Base::operator()( i, col ) *= s;
162 void vsub ( std::size_t coldest, std::size_t colsrc, std::size_t rowEnd,
const scalar_t &s )
164 for( std::size_t i = 0; i <= rowEnd; ++i )
165 Base::operator()( i, coldest ) -= s * Base::operator()( i, colsrc );
172 const std::size_t N = Base::rows();
173 for( std::size_t i = 0; i < N; ++i )
175 for( std::size_t j = 0; j < N; ++j )
176 Base::operator()( i, j ) = scalar_t( i == j ? 1 : 0 );
182 vmul( 0, 0, scalar_t( 1 ) / sqrt( s ) );
183 for( std::size_t i = 1; i < N; ++i )
185 for( std::size_t k = 0; k < i; ++k )
191 vmul( i, i, scalar_t( 1 ) / sqrt( s ) );
vector space out of a tensor product of fields.
Definition: fvector.hh:95
Unique label for each type of entities that can occur in DUNE grids.
Definition: type.hh:123
constexpr unsigned int dim() const
Return dimension of the type.
Definition: type.hh:369
constexpr bool isPrismatic() const
Return true if entity was constructed with a prismatic product in the last step.
Definition: type.hh:351
Implements a matrix constructed from a given type representing a field and compile-time given number ...
void field_cast(const F1 &f1, F2 &f2)
a helper class to cast from one field to another
Definition: field.hh:157
static constexpr T factorial(const T &n) noexcept
calculate the factorial of n as a constexpr
Definition: math.hh:108
A unique label for each type of element that can occur in a grid.