Dune Core Modules (2.8.0)

nedelecsimplexinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_LOCALFUNCTIONS_NEDELEC_NEDELECSIMPLEX_NEDELECSIMPLEXINTERPOLATION_HH
4#define DUNE_LOCALFUNCTIONS_NEDELEC_NEDELECSIMPLEX_NEDELECSIMPLEXINTERPOLATION_HH
5
6#include <fstream>
7#include <utility>
8#include <numeric>
9
11
13#include <dune/geometry/referenceelements.hh>
14#include <dune/geometry/type.hh>
15
16#include <dune/localfunctions/common/localkey.hh>
17#include <dune/localfunctions/utility/interpolationhelper.hh>
18#include <dune/localfunctions/utility/polynomialbasis.hh>
19#include <dune/localfunctions/orthonormal/orthonormalbasis.hh>
20
21namespace Dune
22{
23
24 // Internal Forward Declarations
25 // -----------------------------
26
27 template < unsigned int dim, class Field >
28 struct NedelecL2InterpolationFactory;
29
30
31
32 // LocalCoefficientsContainer
33 // --------------------------
34
35 class LocalCoefficientsContainer
36 {
37 typedef LocalCoefficientsContainer This;
38
39 public:
40 template <class Setter>
41 LocalCoefficientsContainer ( const Setter &setter )
42 {
43 setter.setLocalKeys(localKey_);
44 }
45
46 const LocalKey &localKey ( const unsigned int i ) const
47 {
48 assert( i < size() );
49 return localKey_[ i ];
50 }
51
52 std::size_t size () const
53 {
54 return localKey_.size();
55 }
56
57 private:
58 std::vector< LocalKey > localKey_;
59 };
60
61
62
63 // NedelecCoefficientsFactory
64 // --------------------------------
65
66 template < unsigned int dim >
67 struct NedelecCoefficientsFactory
68 {
69 typedef std::size_t Key;
70 typedef const LocalCoefficientsContainer Object;
71
72 template< GeometryType::Id geometryId >
73 static Object *create( const Key &key )
74 {
75 typedef NedelecL2InterpolationFactory< dim, double > InterpolationFactory;
76 if( !supports< geometryId >( key ) )
77 return nullptr;
78 typename InterpolationFactory::Object *interpolation = InterpolationFactory::template create< geometryId >( key );
79 Object *localKeys = new Object( *interpolation );
80 InterpolationFactory::release( interpolation );
81 return localKeys;
82 }
83
84 template< GeometryType::Id geometryId >
85 static bool supports ( const Key &key )
86 {
87 GeometryType gt = geometryId;
88 return gt.isTriangle() || gt.isTetrahedron() ;
89 }
90 static void release( Object *object ) { delete object; }
91 };
92
93
94
95 // NedelecL2InterpolationBuilder
96 // ------------------------
97
98 // L2 Interpolation requires:
99 // - for element
100 // - test basis
101 // - for each face (dynamic)
102 // - test basis
103 // - tangents
104 // - for each edge (dynamic)
105 // - test basis
106 // - tangent
107 template< unsigned int dim, class Field >
108 struct NedelecL2InterpolationBuilder
109 {
110 static const unsigned int dimension = dim;
111
112 // for the dofs associated to the element
113 typedef OrthonormalBasisFactory< dimension, Field > TestBasisFactory;
114 typedef typename TestBasisFactory::Object TestBasis;
115
116 // for the dofs associated to the faces
117 typedef OrthonormalBasisFactory< dimension-1, Field > TestFaceBasisFactory;
118 typedef typename TestFaceBasisFactory::Object TestFaceBasis;
119
120 // for the dofs associated to the edges
121 typedef OrthonormalBasisFactory< 1, Field > TestEdgeBasisFactory;
122 typedef typename TestEdgeBasisFactory::Object TestEdgeBasis;
123
124 // the tangent of the edges
125 typedef FieldVector< Field, dimension > Tangent;
126
127 // the normal and the tangents of the faces
128 typedef FieldVector< Field, dimension > Normal;
129 typedef std::array<FieldVector< Field, dimension >,dim-1> FaceTangents;
130
131 NedelecL2InterpolationBuilder () = default;
132
133 NedelecL2InterpolationBuilder ( const NedelecL2InterpolationBuilder & ) = delete;
134 NedelecL2InterpolationBuilder ( NedelecL2InterpolationBuilder && ) = delete;
135
136 ~NedelecL2InterpolationBuilder ()
137 {
138 TestBasisFactory::release( testBasis_ );
139 for( FaceStructure &f : faceStructure_ )
140 TestFaceBasisFactory::release( f.basis_ );
141 for( EdgeStructure& e : edgeStructure_ )
142 TestEdgeBasisFactory::release( e.basis_ );
143 }
144
145 unsigned int topologyId () const
146 {
147 return geometry_.id();
148 }
149
150 GeometryType type () const
151 {
152 return geometry_;
153 }
154
155 std::size_t order () const
156 {
157 return order_;
158 }
159
160 // number of faces
161 unsigned int faceSize () const
162 {
163 return numberOfFaces_;
164 }
165
166 // number of edges
167 unsigned int edgeSize () const
168 {
169 return numberOfEdges_;
170 }
171
172 // basis associated to the element
173 TestBasis *testBasis () const
174 {
175 return testBasis_;
176 }
177
178 // basis associated to face f
179 TestFaceBasis *testFaceBasis ( unsigned int f ) const
180 {
181 assert( f < faceSize() );
182 return faceStructure_[ f ].basis_;
183 }
184
185 // basis associated to edge e
186 TestEdgeBasis *testEdgeBasis ( unsigned int e ) const
187 {
188 assert( e < edgeSize() );
189 return edgeStructure_[ e ].basis_;
190 }
191
192 const Tangent& edgeTangent ( unsigned int e ) const
193 {
194 assert( e < edgeSize() );
195 return edgeStructure_[ e ].tangent_;
196 }
197
198 const FaceTangents& faceTangents ( unsigned int f ) const
199 {
200 assert( f < faceSize() );
201 return faceStructure_[ f ].faceTangents_;
202 }
203
204 const Normal &normal ( unsigned int f ) const
205 {
206 assert( f < faceSize() );
207 return faceStructure_[ f ].normal_;
208 }
209
210 template< GeometryType::Id geometryId >
211 void build ( std::size_t order )
212 {
213 constexpr GeometryType geometry = geometryId;
214 order_ = order;
215 geometry_ = geometry;
216
217 /*
218 * The Nedelec parameter begins at 1.
219 * This is the numbering used by J.C. Nedelec himself.
220 * See "Mixed Finite Elements in \R^3" published in 1980.
221 *
222 * This construction is based on the construction of Raviart-Thomas elements.
223 * There the numbering starts at 0.
224 * Because of this we reduce the order internally by 1.
225 */
226 order--;
227
228 // if dimension == 2: order-1 on element
229 // if dimension == 3: order-2 on element
230 int requiredOrder = static_cast<int>(dimension==3);
231 testBasis_ = (order > requiredOrder ? TestBasisFactory::template create< geometry >( order-1-requiredOrder ) : nullptr);
232
233 const auto &refElement = ReferenceElements< Field, dimension >::general( type() );
234
235 numberOfFaces_ = refElement.size( 1 );
236 faceStructure_.reserve( numberOfFaces_ );
237
238 // compute the basis, tangents and normals of each face
239 for (std::size_t i=0; i<numberOfFaces_; i++)
240 {
241 FieldVector<Field,dimension> zero(0);
242 FaceTangents faceTangents;
243 faceTangents.fill(zero);
244
245 // use the first dim-1 vertices of a face to compute the tangents
246 auto vertices = refElement.subEntities(i,1,dim).begin();
247 auto vertex1 = *vertices;
248 for(int j=1; j<dim;j++)
249 {
250 auto vertex2 = vertices[j];
251
252 faceTangents[j-1] = refElement.position(vertex2,dim) - refElement.position(vertex1,dim);
253
254 // By default, edges point from the vertex with the smaller index
255 // to the vertex with the larger index.
256 if (vertex1>vertex2)
257 faceTangents[j-1] *=-1;
258
259 vertex1 = vertex2;
260 }
261
262 /* For simplices or cubes of arbitrary dimension you could just use
263 *
264 * ```
265 * GeometryType faceGeometry = Impl::getBase(geometry_);
266 * TestFaceBasis *faceBasis = ( dim == 3 && order > 0 ? TestFaceBasisFactory::template create< faceGeometry >( order-1 ) : nullptr);
267 * ```
268 *
269 * For i.e. Prisms and Pyramids in 3d this does not work because they contain squares and triangles as faces.
270 * And depending on the dynamic face index a different face geometry is needed.
271 *
272 */
273 TestFaceBasis *faceBasis = ( dim == 3 && order > 0 ? Impl::IfGeometryType< CreateFaceBasis, dimension-1 >::apply( refElement.type( i, 1 ), order-1 ) : nullptr);
274 faceStructure_.emplace_back( faceBasis, refElement.integrationOuterNormal(i), faceTangents );
275 }
276 assert( faceStructure_.size() == numberOfFaces_ );
277
278 numberOfEdges_ = refElement.size( dim-1 );
279 edgeStructure_.reserve( numberOfEdges_ );
280
281 // compute the basis and tangent of each edge
282 for (std::size_t i=0; i<numberOfEdges_; i++)
283 {
284 auto vertexIterator = refElement.subEntities(i,dim-1,dim).begin();
285 auto v0 = *vertexIterator;
286 auto v1 = *(++vertexIterator);
287
288 // By default, edges point from the vertex with the smaller index
289 // to the vertex with the larger index.
290 if (v0>v1)
291 std::swap(v0,v1);
292 auto tangent = std::move(refElement.position(v1,dim) - refElement.position(v0,dim));
293
294 TestEdgeBasis *edgeBasis = Impl::IfGeometryType< CreateEdgeBasis, 1 >::apply( refElement.type( i, dim-1 ), order );
295 edgeStructure_.emplace_back( edgeBasis, tangent );
296 }
297 assert( edgeStructure_.size() == numberOfEdges_ );
298 }
299
300 private:
301
302 // helper struct for edges
303 struct EdgeStructure
304 {
305 EdgeStructure( TestEdgeBasis *teb, const Tangent &t )
306 : basis_( teb ), tangent_( t )
307 {}
308
309 TestEdgeBasis *basis_;
311 };
312
313 template< GeometryType::Id edgeGeometryId >
314 struct CreateEdgeBasis
315 {
316 static TestEdgeBasis *apply ( std::size_t order ) { return TestEdgeBasisFactory::template create< edgeGeometryId >( order ); }
317 };
318
319 // helper struct for faces
320 struct FaceStructure
321 {
322 FaceStructure( TestFaceBasis *tfb, const Normal& normal, const FaceTangents& faceTangents )
323 : basis_( tfb ), normal_(normal), faceTangents_( faceTangents )
324 {}
325
326 TestFaceBasis *basis_;
328 const FaceTangents faceTangents_;
329 };
330
331 template< GeometryType::Id faceGeometryId >
332 struct CreateFaceBasis
333 {
334 static TestFaceBasis *apply ( std::size_t order ) { return TestFaceBasisFactory::template create< faceGeometryId >( order ); }
335 };
336
337 TestBasis *testBasis_ = nullptr;
338 std::vector< FaceStructure > faceStructure_;
339 unsigned int numberOfFaces_;
340 std::vector< EdgeStructure > edgeStructure_;
341 unsigned int numberOfEdges_;
342 GeometryType geometry_;
343 std::size_t order_;
344 };
345
346
347
348 // NedelecL2Interpolation
349 // ----------------------------
350
356 template< unsigned int dimension, class F>
358 : public InterpolationHelper< F ,dimension >
359 {
361 typedef InterpolationHelper<F,dimension> Base;
362
363 public:
364 typedef F Field;
365 typedef NedelecL2InterpolationBuilder<dimension,Field> Builder;
366 typedef typename Builder::FaceTangents FaceTangents;
367
369 : order_(0),
370 size_(0)
371 {}
372
373 template< class Function, class Vector >
374 auto interpolate ( const Function &function, Vector &coefficients ) const
375 -> std::enable_if_t< std::is_same< decltype(std::declval<Vector>().resize(1) ),void >::value,void>
376 {
377 coefficients.resize(size());
378 typename Base::template Helper<Function,Vector,true> func( function,coefficients );
379 interpolate(func);
380 }
381
382 template< class Basis, class Matrix >
383 auto interpolate ( const Basis &basis, Matrix &matrix ) const
384 -> std::enable_if_t< std::is_same<
385 decltype(std::declval<Matrix>().rowPtr(0)), typename Matrix::Field* >::value,void>
386 {
387 matrix.resize( size(), basis.size() );
388 typename Base::template Helper<Basis,Matrix,false> func( basis,matrix );
389 interpolate(func);
390 }
391
392 std::size_t order() const
393 {
394 return order_;
395 }
396 std::size_t size() const
397 {
398 return size_;
399 }
400
401 template <GeometryType::Id geometryId>
402 void build( std::size_t order )
403 {
404 size_ = 0;
405 order_ = order;
406 builder_.template build<geometryId>(order_);
407 if (builder_.testBasis())
408 size_ += dimension*builder_.testBasis()->size();
409
410 for ( unsigned int f=0; f<builder_.faceSize(); ++f )
411 if (builder_.testFaceBasis(f))
412 size_ += (dimension-1)*builder_.testFaceBasis(f)->size();
413
414 for ( unsigned int e=0; e<builder_.edgeSize(); ++e )
415 if (builder_.testEdgeBasis(e))
416 size_ += builder_.testEdgeBasis(e)->size();
417 }
418
419 void setLocalKeys(std::vector< LocalKey > &keys) const
420 {
421 keys.resize(size());
422 unsigned int row = 0;
423 for (unsigned int e=0; e<builder_.edgeSize(); ++e)
424 {
425 if (builder_.edgeSize())
426 for (unsigned int i=0; i<builder_.testEdgeBasis(e)->size(); ++i,++row)
427 keys[row] = LocalKey(e,dimension-1,i);
428 }
429 for (unsigned int f=0; f<builder_.faceSize(); ++f)
430 {
431 if (builder_.faceSize())
432 for (unsigned int i=0; i<builder_.testFaceBasis(f)->size()*(dimension-1); ++i,++row)
433 keys[row] = LocalKey(f,1,i);
434 }
435
436 if (builder_.testBasis())
437 for (unsigned int i=0; i<builder_.testBasis()->size()*dimension; ++i,++row)
438 keys[row] = LocalKey(0,0,i);
439 assert( row == size() );
440 }
441
442 protected:
443 template< class Func, class Container, bool type >
444 void interpolate ( typename Base::template Helper<Func,Container,type> &func ) const
445 {
446 const Dune::GeometryType geoType( builder_.topologyId(), dimension );
447
448 std::vector<Field> testBasisVal;
449
450 for (unsigned int i=0; i<size(); ++i)
451 for (unsigned int j=0; j<func.size(); ++j)
452 func.set(i,j,0);
453
454 unsigned int row = 0;
455
456 // edge dofs:
457 typedef Dune::QuadratureRule<Field, 1> EdgeQuadrature;
458 typedef Dune::QuadratureRules<Field, 1> EdgeQuadratureRules;
459
460 const auto &refElement = Dune::ReferenceElements< Field, dimension >::general( geoType );
461
462 for (unsigned int e=0; e<builder_.edgeSize(); ++e)
463 {
464 if (!builder_.testEdgeBasis(e))
465 continue;
466 testBasisVal.resize(builder_.testEdgeBasis(e)->size());
467
468 const auto &geometry = refElement.template geometry< dimension-1 >( e );
469 const Dune::GeometryType subGeoType( geometry.type().id(), 1 );
470 const EdgeQuadrature &edgeQuad = EdgeQuadratureRules::rule( subGeoType, 2*order_+2 );
471
472 const unsigned int quadratureSize = edgeQuad.size();
473 for( unsigned int qi = 0; qi < quadratureSize; ++qi )
474 {
475 if (dimension>1)
476 builder_.testEdgeBasis(e)->template evaluate<0>(edgeQuad[qi].position(),testBasisVal);
477 else
478 testBasisVal[0] = 1.;
479 computeEdgeDofs(row,
480 testBasisVal,
481 func.evaluate( geometry.global( edgeQuad[qi].position() ) ),
482 builder_.edgeTangent(e),
483 edgeQuad[qi].weight(),
484 func);
485 }
486
487 row += builder_.testEdgeBasis(e)->size();
488 }
489
490 // face dofs:
491 typedef Dune::QuadratureRule<Field, dimension-1> FaceQuadrature;
492 typedef Dune::QuadratureRules<Field, dimension-1> FaceQuadratureRules;
493
494 for (unsigned int f=0; f<builder_.faceSize(); ++f)
495 {
496 if (builder_.testFaceBasis(f))
497 {
498 testBasisVal.resize(builder_.testFaceBasis(f)->size());
499
500 const auto &geometry = refElement.template geometry< 1 >( f );
501 const Dune::GeometryType subGeoType( geometry.type().id(), dimension-1 );
502 const FaceQuadrature &faceQuad = FaceQuadratureRules::rule( subGeoType, 2*order_+2 );
503
504 const unsigned int quadratureSize = faceQuad.size();
505 for( unsigned int qi = 0; qi < quadratureSize; ++qi )
506 {
507 if (dimension>1)
508 builder_.testFaceBasis(f)->template evaluate<0>(faceQuad[qi].position(),testBasisVal);
509 else
510 testBasisVal[0] = 1.;
511
512 computeFaceDofs( row,
513 testBasisVal,
514 func.evaluate( geometry.global( faceQuad[qi].position() ) ),
515 builder_.faceTangents(f),
516 builder_.normal(f),
517 faceQuad[qi].weight(),
518 func);
519 }
520
521 row += builder_.testFaceBasis(f)->size()*(dimension-1);
522 }
523 }
524
525 // element dofs
526 if (builder_.testBasis())
527 {
528 testBasisVal.resize(builder_.testBasis()->size());
529
532 const Quadrature &elemQuad = QuadratureRules::rule( geoType, 2*order_+1 );
533
534 const unsigned int quadratureSize = elemQuad.size();
535 for( unsigned int qi = 0; qi < quadratureSize; ++qi )
536 {
537 builder_.testBasis()->template evaluate<0>(elemQuad[qi].position(),testBasisVal);
538 computeInteriorDofs(row,
539 testBasisVal,
540 func.evaluate(elemQuad[qi].position()),
541 elemQuad[qi].weight(),
542 func );
543 }
544
545 row += builder_.testBasis()->size()*dimension;
546 }
547 assert(row==size());
548 }
549
550 private:
560 template <class MVal, class NedVal,class Matrix>
561 void computeEdgeDofs (unsigned int startRow,
562 const MVal &mVal,
563 const NedVal &nedVal,
564 const FieldVector<Field,dimension> &tangent,
565 const Field &weight,
566 Matrix &matrix) const
567 {
568 const unsigned int endRow = startRow+mVal.size();
569 typename NedVal::const_iterator nedIter = nedVal.begin();
570 for ( unsigned int col = 0; col < nedVal.size() ; ++nedIter,++col)
571 {
572 Field cFactor = (*nedIter)*tangent;
573 typename MVal::const_iterator mIter = mVal.begin();
574 for (unsigned int row = startRow; row!=endRow; ++mIter, ++row )
575 matrix.add(row,col, (weight*cFactor)*(*mIter) );
576
577 assert( mIter == mVal.end() );
578 }
579 }
580
591 template <class MVal, class NedVal,class Matrix>
592 void computeFaceDofs (unsigned int startRow,
593 const MVal &mVal,
594 const NedVal &nedVal,
595 const FaceTangents& faceTangents,
596 const FieldVector<Field,dimension> &normal,
597 const Field &weight,
598 Matrix &matrix) const
599 {
600 const unsigned int endRow = startRow+mVal.size()*(dimension-1);
601 typename NedVal::const_iterator nedIter = nedVal.begin();
602 for ( unsigned int col = 0; col < nedVal.size() ; ++nedIter,++col)
603 {
604 auto const& u=*nedIter;
605 auto const& n=normal;
606 FieldVector<Field,dimension> nedTimesNormal = { u[1]*n[2]-u[2]*n[1],
607 u[2]*n[0]-u[0]*n[2],
608 u[0]*n[1]-u[1]*n[0]};
609 typename MVal::const_iterator mIter = mVal.begin();
610 for (unsigned int row = startRow; row!=endRow; ++mIter)
611 {
612 for(int i=0; i<dimension-1;i++)
613 {
614 auto test = *mIter*faceTangents[i];
615 matrix.add(row+i,col, weight*(nedTimesNormal*test) );
616 }
617 row += dimension-1;
618 }
619
620 assert( mIter == mVal.end() );
621 }
622 }
623
632 template <class MVal, class NedVal,class Matrix>
633 void computeInteriorDofs (unsigned int startRow,
634 const MVal &mVal,
635 const NedVal &nedVal,
636 Field weight,
637 Matrix &matrix) const
638 {
639 const unsigned int endRow = startRow+mVal.size()*dimension;
640 typename NedVal::const_iterator nedIter = nedVal.begin();
641 for ( unsigned int col = 0; col < nedVal.size() ; ++nedIter,++col)
642 {
643 typename MVal::const_iterator mIter = mVal.begin();
644 for (unsigned int row = startRow; row!=endRow; ++mIter,row+=dimension )
645 for (unsigned int i=0; i<dimension; ++i)
646 matrix.add(row+i,col, (weight*(*mIter))*(*nedIter)[i] );
647
648 assert( mIter == mVal.end() );
649 }
650 }
651
652 public:
653 Builder builder_;
654 std::size_t order_;
655 std::size_t size_;
656 };
657
658 template < unsigned int dim, class Field >
659 struct NedelecL2InterpolationFactory
660 {
661 typedef NedelecL2InterpolationBuilder<dim,Field> Builder;
662 typedef const NedelecL2Interpolation<dim,Field> Object;
663 typedef std::size_t Key;
664 typedef typename std::remove_const<Object>::type NonConstObject;
665
666 template <GeometryType::Id geometryId>
667 static Object *create( const Key &key )
668 {
669 if ( !supports<geometryId>(key) )
670 return 0;
671 NonConstObject *interpol = new NonConstObject();
672 interpol->template build<geometryId>(key);
673 return interpol;
674 }
675
676 template <GeometryType::Id geometryId>
677 static bool supports( const Key &key )
678 {
679 GeometryType gt = geometryId;
680 return gt.isTriangle() || gt.isTetrahedron() ;
681 }
682 static void release( Object *object ) { delete object; }
683 };
684
685} // namespace Dune
686
687#endif // #ifndef DUNE_LOCALFUNCTIONS_NEDELEC_NEDELECSIMPLEX_NEDELECSIMPLEXINTERPOLATION_HH
Iterator begin()
begin iterator
Definition: densevector.hh:348
Base class template for function classes.
Definition: function.hh:39
Unique label for each type of entities that can occur in DUNE grids.
Definition: type.hh:123
Describe position of one degree of freedom.
Definition: localkey.hh:21
A generic dynamic dense matrix.
Definition: matrix.hh:559
An L2-based interpolation for Nedelec.
Definition: nedelecsimplexinterpolation.hh:359
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:152
A container for all quadrature rules of dimension dim
Definition: quadraturerules.hh:198
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:280
A few common exception classes.
GeometryType
Type representing VTK's entity geometry types.
Definition: common.hh:130
bool gt(const T &first, const T &second, typename EpsilonType< T >::Type epsilon)
test if first greater than second
Definition: float_cmp.cc:156
Dune namespace.
Definition: alignedallocator.hh:11
static const ReferenceElement & general(const GeometryType &type)
get general reference elements
Definition: referenceelements.hh:196
A unique label for each type of element that can occur in a grid.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 21, 23:30, 2024)