DUNE-FEM (unstable)

Dune::SimplexP1BubbleLocalFiniteElement< D, R, dim > Class Template Reference

Linear Lagrange functions enriched with an element bubble function. More...

#include <dune/localfunctions/enriched/simplexp1bubble.hh>

Public Types

using LocalBasisType = SimplexP1BubbleLocalBasis< D, R, dim >
 Type of the local basis.
 
using LocalCoefficientsType = SimplexP1BubbleLocalCoefficients< dim >
 Type of the local coefficients.
 
using LocalInterpolationType = SimplexP1BubbleLocalInterpolation< LocalBasisType >
 Type of the local interpolation.
 
using Traits = LocalFiniteElementTraits< LocalBasisType, LocalCoefficientsType, LocalInterpolationType >
 Traits type that specifies the local basis, coefficients, and interpolation type.
 

Public Member Functions

const LocalBasisTypelocalBasis () const
 Returns the local basis, i.e., the set of shape functions.
 
const LocalCoefficientsTypelocalCoefficients () const
 Returns the assignment of the degrees of freedom to the element subentities.
 
const LocalInterpolationTypelocalInterpolation () const
 Returns object that evaluates degrees of freedom.
 

Static Public Member Functions

static constexpr std::size_t size () noexcept
 Returns the number of shape functions in this finite-element.
 
static constexpr GeometryType type () noexcept
 Returns the type of the geometry the finite-element is attached to.
 

Detailed Description

template<class D, class R, int dim>
class Dune::SimplexP1BubbleLocalFiniteElement< D, R, dim >

Linear Lagrange functions enriched with an element bubble function.

The set of basis functions contains the classical Lagrange basis functions of order 1, i.e., the barycentric coordinates, and a single element "bubble" function that vanishes on all faces of the element. The bubble function is simply defined as the product of all linear basis functions and thus has polynomial order dim+1.

A classical example where this kind of basis is used in the discretization of the Stokes equation with the stable mixed-element called MINI element, see

Arnold, D.N., Brezzi, F. and Fortin, M. A stable finite element for the Stokes equations. Calcolo 21, 337-344 (1984). doi: 10.1007/BF02576171

The velocity field is discretized with continuous piecewise linear functions enriched by a bubble function.

Note
The implementation here is restricted to simplex elements.
Template Parameters
DType to represent the field in the domain.
RType to represent the field in the range.
dimDimension of the domain.

The documentation for this class was generated from the following file:
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 12, 23:30, 2024)