DUNE-FEM (unstable)

Dune::Fem::LumpingQuadrature< FieldImp, geometryId > Class Template Reference

#include <dune/fem/quadrature/lumpingquadrature.hh>

Public Types

enum  
 to be revised, look at caching quad
 

Public Member Functions

 LumpingQuadrature (const GeometryType &gt, int order, int id)
 constructor filling the list of points and weights. More...
 
virtual GeometryType geometryType () const
 
virtual int order () const
 obtain order of the integration point list More...
 
const FieldType & weight (size_t i) const
 obtain weight of i-th integration point More...
 
const CoordinateTypepoint (size_t i) const
 obtain coordinates of i-th integration point More...
 
size_t nop () const
 obtain the number of integration points More...
 
size_t id () const
 obtain the identifier of the integration point list More...
 
virtual std::vector< ElementCoordinateTypeinterpolationPoints (const int reqDim) const
 returns list of element interpolation points for a given face quadrature
 
virtual bool isFaceInterpolationQuadrature (const size_t numShapeFunctions) const
 return true if quadrature is also a set of interpolation points for a given number of shape functions
 

Static Public Member Functions

static std::size_t maxOrder ()
 maximal order of available quadratures
 

Protected Member Functions

void addQuadraturePoint (const CoordinateType &point, const FieldType weight)
 Adds a point-weight pair to the quadrature. More...
 
void setIntegrationPoints (std::vector< CoordinateType > &&points)
 Overwrites integration point list

 

Detailed Description

template<class FieldImp, Dune::GeometryType::Id geometryId>
class Dune::Fem::LumpingQuadrature< FieldImp, geometryId >

Define a lumping quadrature for all geometries. Note, however, that this may not make sense for anything else than simplices or maybe hexagonal grids. For simplicial meshes the quadrature formula is exact on linear polynomials and hence the quadrature error is quadratic in the mesh-size. A mass-matrix assembled with the caching quadrature will be diagonal in the context of Lagrange spaces. Generally, it is a bad idea to use mass-lumping for anything else than linear (or maybe bilinear) finite elements.

There are probably much more efficient ways to perform mass-lumping. This "quadrature" approach is convenient, however, as it can simply be plugged into existing code by replacing the quadrature rules.

Constructor & Destructor Documentation

◆ LumpingQuadrature()

template<class FieldImp , Dune::GeometryType::Id geometryId>
Dune::Fem::LumpingQuadrature< FieldImp, geometryId >::LumpingQuadrature ( const GeometryType gt,
int  order,
int  id 
)
inline

constructor filling the list of points and weights.

Parameters
[in]gtgeometry type for which a quadrature is desired
[in]orderorder (between 1 and 6)
[in]idunique identifier, ignored

References Dune::Fem::QuadratureImp< FieldImp, Dune::GeometryType(geometryId).dim()>::addQuadraturePoint(), Dune::Geo::ReferenceElements< ctype_, dim >::general(), Dune::FloatCmp::gt(), Dune::GeometryType::id(), and Dune::Fem::QuadratureImp< FieldImp, Dune::GeometryType(geometryId).dim()>::weight().

Member Function Documentation

◆ addQuadraturePoint()

void Dune::Fem::QuadratureImp< FieldImp, dim >::addQuadraturePoint ( const CoordinateType point,
const FieldType  weight 
)
inlineprotectedinherited

Adds a point-weight pair to the quadrature.

This method allows derived classes to add quadrature points (and their respective weights) to the list. This mehtod should only be used within the constructor of the derived class.

◆ geometryType()

template<class FieldImp , Dune::GeometryType::Id geometryId>
virtual GeometryType Dune::Fem::LumpingQuadrature< FieldImp, geometryId >::geometryType ( ) const
inlinevirtual

◆ id()

template<typename FieldImp , int dim>
size_t Dune::Fem::IntegrationPointListImp< FieldImp, dim >::id ( ) const
inlineinherited

obtain the identifier of the integration point list

The identifier of an integration point list must be globally unique. Even integration point lists for different dimensions must have different identifiers.

Note
Quadratures are considered distinct if they differ in one of the following points: geometry type, order, dimension or implementation.
Returns
globally unique identifier of the integration point list

Referenced by Dune::Fem::TwistProvider< ct, dim >::getTwistStorage().

◆ nop()

template<typename FieldImp , int dim>
size_t Dune::Fem::IntegrationPointListImp< FieldImp, dim >::nop ( ) const
inlineinherited

obtain the number of integration points

Returns
number of integration points within this list

Referenced by Dune::Fem::IntegrationPointListImp< FieldImp, dim >::point().

◆ order()

template<class FieldImp , Dune::GeometryType::Id geometryId>
virtual int Dune::Fem::LumpingQuadrature< FieldImp, geometryId >::order ( ) const
inlinevirtual

obtain order of the integration point list

The order of a quadrature is the maximal polynomial degree that is guaranteed to be integrated exactly by the quadrature.

In case of an integration point list, the definition of this value is left to the implementor.

Returns
the order of the integration point list

Implements Dune::Fem::IntegrationPointListImp< FieldImp, dim >.

◆ point()

template<typename FieldImp , int dim>
const CoordinateType & Dune::Fem::IntegrationPointListImp< FieldImp, dim >::point ( size_t  i) const
inlineinherited

obtain coordinates of i-th integration point

This method returns a reference to the coordinates of the i-th integration point for 0 <= i < nop(). The integration point is given in local coordinates, i.e., coordinates with respect to the reference element.

Parameters
[in]inumber of the integration point, 0 <= i < nop()
Returns
reference to i-th integration point

References Dune::Fem::IntegrationPointListImp< FieldImp, dim >::nop().

Referenced by Dune::Fem::IntegrationPointListImp< FieldImp, dim >::addIntegrationPoint(), and Dune::Fem::QuadratureImp< FieldImp, dim >::addQuadraturePoint().

◆ weight()

const FieldType & Dune::Fem::QuadratureImp< FieldImp, dim >::weight ( size_t  i) const
inlineinherited

obtain weight of i-th integration point

This method returns the weight of the i-th integration point for 0 <= i < nop() within the quadrature.

Note
The integration point can be obtained via the point() method.
The quadrature weights sum up to the volume of the reference element.
Parameters
[in]inumber of the integration point, 0 <= i < nop()
Returns
weight of the i-th integration point

The documentation for this class was generated from the following file:
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 12, 23:30, 2024)