DUNE-FEM (unstable)

Dune::Fem::HdivProjection< DiscreteFunctionType > Class Template Referenceabstract

H-div Projection for discontinuous discrete functions. The projection is described in detail in: More...

#include <dune/fem/operator/projection/hdivprojection.hh>

Public Types

typedef DiscreteFunctionType DestinationType
 type of argument and destination
 
typedef DiscreteFunctionSpaceType SpaceType
 convenience typedef for space type
 

Public Member Functions

 HdivProjection (const DiscreteFunctionSpaceType &space)
 constructor taking space
 
const DiscreteFunctionSpaceType & space () const
 return reference to space
 
void setTime (double)
 set time for operators More...
 
double timeStepEstimate () const
 estimate maximum time step More...
 
virtual void operator() (const DiscreteFunctionType &arg, DiscreteFunctionType &dest) const
 application operator projection arg to H-div space
 
virtual int size () const
 return size of discrete function space, i.e. number of unknowns
 
virtual void initializeTimeStepSize (const DestinationType &U0) const
 call operator once to calculate initial time step size More...
 
virtual bool hasLimiter () const
 return true if limit method is implemented More...
 
virtual void limit (const DestinationType &arg, DestinationType &dest) const
 limiter application operator More...
 
virtual void applyLimiter (DestinationType &U) const
 limiter application operator More...
 
virtual const DestinationTypedestination () const
 return reference to pass's local memory
 
virtual void jacobian (const DomainFunctionType &u, JacobianOperatorType &jOp) const=0
 obtain linearization More...
 
virtual void operator() (const DomainFunctionType &u, RangeFunctionType &w) const=0
 application operator More...
 
virtual void finalize ()
 finalization of operator More...
 
virtual bool nonlinear () const
 

Static Public Member Functions

static double normalJump (const DiscreteFunctionType &discFunc, const int polyOrder=-1)
 return sum of jumps of discrete function normal to intersection
 

Detailed Description

template<class DiscreteFunctionType>
class Dune::Fem::HdivProjection< DiscreteFunctionType >

H-div Projection for discontinuous discrete functions. The projection is described in detail in:

P. Bastian and B. Riviere. Superconvergence and H(div)-projection for discontinuous Galerkin methods. Int. J. Numer. Meth. Fluids., 42:1043-1057, 2003.

(see homepage of Peter Bastian: http://hal.iwr.uni-heidelberg.de/~peter/Papers/BDMpaper.pdf )

Note:

This projection only works for polynomial order 1 and the following spaces:

  • SimplexGrids + DiscontinuousGalerkinSpace
  • CubeGrids + LegendreDiscontinuousGalerkinSpace

Member Function Documentation

◆ applyLimiter()

limiter application operator

Parameters
[in,out]Uargument and destination to apply Limiter(u), needs internal copying
Note
: Default implementation is to do nothing (hasLimiter == false)

◆ finalize()

virtual void Dune::Fem::Operator< JacobianOperator::DomainFunctionType , JacobianOperator::RangeFunctionType >::finalize ( )
inlinevirtualinherited

finalization of operator

Note
The default implementation is empty.

◆ hasLimiter()

virtual bool Dune::Fem::SpaceOperatorInterface< DiscreteFunctionType , Fem::AutomaticDifferenceOperator< DiscreteFunctionType > >::hasLimiter ( ) const
inlinevirtualinherited

return true if limit method is implemented

Returns
true if limit is implemented

◆ initializeTimeStepSize()

void Dune::Fem::SpaceOperatorInterface< DiscreteFunctionType , Fem::AutomaticDifferenceOperator< DiscreteFunctionType > >::initializeTimeStepSize ( const DestinationType U0) const
inlinevirtualinherited

call operator once to calculate initial time step size

Parameters
U0initial data to compute initial time step size

◆ jacobian()

virtual void Dune::Fem::DifferentiableOperator< AutomaticDifferenceLinearOperator< DiscreteFunctionType, DiscreteFunctionType > >::jacobian ( const DomainFunctionType u,
JacobianOperatorType jOp 
) const
pure virtualinherited

obtain linearization

Parameters
[in]uargument discrete function
[out]jOpdestination Jacobian operator
Note
This method has to be implemented by all derived classes.

◆ limit()

virtual void Dune::Fem::SpaceOperatorInterface< DiscreteFunctionType , Fem::AutomaticDifferenceOperator< DiscreteFunctionType > >::limit ( const DestinationType arg,
DestinationType dest 
) const
inlinevirtualinherited

limiter application operator

Parameters
argargument, u
destdestination, Limiter(u)
Note
: Default implementation is to copy arg into dest.

◆ nonlinear()

virtual bool Dune::Fem::Operator< JacobianOperator::DomainFunctionType , JacobianOperator::RangeFunctionType >::nonlinear ( ) const
inlinevirtualinherited

Return true if the Operator is nonlinear and false otherwise (default is true).

◆ operator()()

virtual void Dune::Fem::Operator< JacobianOperator::DomainFunctionType , JacobianOperator::RangeFunctionType >::operator() ( const DomainFunctionType u,
RangeFunctionType w 
) const
pure virtualinherited

application operator

Parameters
[in]uargument discrete function
[out]wdestination discrete function
Note
This method has to be implemented by all derived classes.

Implemented in EllipticOperator< JacobianOperator::DomainFunctionType, JacobianOperator::RangeFunctionType, Model >.

◆ setTime()

template<class DiscreteFunctionType >
void Dune::Fem::HdivProjection< DiscreteFunctionType >::setTime ( double  time)
inlinevirtual

set time for operators

Parameters
timecurrent time of evaluation

Reimplemented from Dune::Fem::SpaceOperatorInterface< DiscreteFunctionType >.

◆ timeStepEstimate()

template<class DiscreteFunctionType >
double Dune::Fem::HdivProjection< DiscreteFunctionType >::timeStepEstimate ( ) const
inlinevirtual

estimate maximum time step

For an explicit time discretization, the time step has to be limited. An estimate for the maximum time step of an explicit Euler scheme is returned by this function. Maximum time steps for higher order Runge Kutta schemes can be derived from this value.

Reimplemented from Dune::Fem::SpaceOperatorInterface< DiscreteFunctionType >.


The documentation for this class was generated from the following file:
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 21, 23:30, 2024)