DUNE-ACFEM (unstable)

Dune::ACFem::PDEModel::WeakDivergenceLoadModel< GridFunction > Class Template Reference

For a given grid-function define a model implementing the weak divergence. More...

#include <dune/acfem/models/modules/weakdivergenceloadmodel.hh>

+ Collaboration diagram for Dune::ACFem::PDEModel::WeakDivergenceLoadModel< GridFunction >:

Public Member Functions

template<class Entity >
void bind (const Entity &entity)
 Bind to the given entity. More...
 
void unbind ()
 Unbind from the previously bound entity. More...
 
template<class Quadrature >
JacobianRangeType flux (const QuadraturePoint< Quadrature > &x) const
 Evaluate \(A(x, u)\nabla u(x)\) in local coordinates. More...
 
template<class Quadrature >
auto fluxDivergence (const QuadraturePoint< Quadrature > &x) const
 Compute the point-wise value of the flux-part of the operator, meaning the part of the differential operator which is multiplied by the derivative of the test function. More...
 

FunctionSpaceTypes

Forward some basic type from the supplied function-spaces to the model class.

Note that FunctionSpace is defined as a shortcut for RangeFunctionSpace in order to simplify the common case DomainFunctionSpace == RangeFunctionSpace.

using HessianRangeSelector = typename std::conditional< std::is_convertible< typename FunctionSpace::RangeType, typename FunctionSpace::HessianRangeType >::value, Fem::ExplicitFieldVector< typename FunctionSpace::HessianRangeType::value_type, FunctionSpace::dimRange >, typename FunctionSpace::HessianRangeType >::type
 The type returned by classifyBoundary().
 
using RangeFunctionSpaceType = std::decay_t< GridFunction >::FunctionSpaceType::ScalarFunctionSpaceType
 The type returned by classifyBoundary().
 
using DomainFunctionSpaceType = std::decay_t< GridFunction >::FunctionSpaceType::ScalarFunctionSpaceType
 The type returned by classifyBoundary().
 
using FunctionSpaceType = RangeFunctionSpaceType
 The type returned by classifyBoundary().
 
using HessianRangeType = HessianRangeSelector< FunctionSpaceType >
 The type returned by classifyBoundary().
 
using DomainFieldType = typename FunctionSpaceType::DomainFieldType
 The type returned by classifyBoundary().
 
using RangeFieldType = typename FunctionSpaceType::RangeFieldType
 The type returned by classifyBoundary().
 
using DomainRangeType = typename DomainFunctionSpaceType::RangeType
 The type returned by classifyBoundary().
 
using DomainDomainType = typename DomainFunctionSpaceType::DomainType
 The type returned by classifyBoundary().
 
using DomainJacobianRangeType = typename DomainFunctionSpaceType::JacobianRangeType
 The type returned by classifyBoundary().
 
using DomainHessianRangeType = HessianRangeSelector< DomainFunctionSpaceType >
 The type returned by classifyBoundary().
 
using DomainDomainFieldType = typename DomainFunctionSpaceType::DomainFieldType
 The type returned by classifyBoundary().
 
using DomainRangeFieldType = typename DomainFunctionSpaceType::RangeFieldType
 The type returned by classifyBoundary().
 
using RangeRangeType = typename RangeFunctionSpaceType::RangeType
 The type returned by classifyBoundary().
 
using RangeDomainType = typename RangeFunctionSpaceType::DomainType
 The type returned by classifyBoundary().
 
using RangeJacobianRangeType = typename RangeFunctionSpaceType::JacobianRangeType
 The type returned by classifyBoundary().
 
using RangeHessianRangeType = HessianRangeSelector< RangeFunctionSpaceType >
 The type returned by classifyBoundary().
 
using RangeDomainFieldType = typename RangeFunctionSpaceType::DomainFieldType
 The type returned by classifyBoundary().
 
using RangeRangeFieldType = typename RangeFunctionSpaceType::RangeFieldType
 The type returned by classifyBoundary().
 
using BoundaryConditionsType = std::pair< bool, std::bitset< dimRange > >
 The type returned by classifyBoundary().
 
auto classifyBoundary (const Intersection &intersection)
 Bind to the given intersection and classify the components w.r.t. More...
 
static constexpr int domainDimDomain
 The type returned by classifyBoundary().
 
static constexpr int domainDimRange
 
static constexpr int rangeDimDomain
 The type returned by classifyBoundary().
 
static constexpr int rangeDimRange
 

Detailed Description

template<class GridFunction>
class Dune::ACFem::PDEModel::WeakDivergenceLoadModel< GridFunction >

For a given grid-function define a model implementing the weak divergence.

In formulas: this fragment implements the bulk-part of the right-hand-side of the following equation, where \(\phi\) is a scalar test-function:

\[ \int_\Omega \partial_i p_i \, \cdot \phi = -\int_\Omega p_i \, \partial_i\phi + \int_{\partial\Omega} p_i \, \phi \nu_i \]

The boundary integral is not computed, intentionally it is substituted by suitable boundary conditions.

\(p\) acts as data, so this model just acts as a "constant", i.e. as a contribution to the right hand side.

Parameters
GridFunctionThe type of the function the weak divergence has to be computed from. This must be a grid-function, i.e. it has to carry a local function and must have dimRange == dimWorld.

Member Function Documentation

◆ classifyBoundary()

auto Dune::ACFem::ModelBase< std::decay_t< GridFunction >::FunctionSpaceType::ScalarFunctionSpaceType , std::decay_t< GridFunction >::FunctionSpaceType::ScalarFunctionSpaceType >::classifyBoundary ( const Intersection &  intersection)
inlineinherited

Bind to the given intersection and classify the components w.r.t.

to the kind of applicable boundary conditions.

Warning
Note that prior to calling this function the model has to be bound to the inside entity of the given intersection. Failing to do so generates undefined behaviour.
The result of calling the other boundary related methods without binding to an intersection is undefined.
If RESULT.first is false, then the result of calling any of the other boundary related functions is undefined. Philosophically, they should return 0 in this case, but in order to have decent performance they give a damn and just don't care.
If RESULT.first is true, then still you cannot rely on user-friendly behaviour:
  • only if the respective bit of RESULT.second is set to 1, then the Dirichlet value in this compoment is well-defined.
  • only if the respective bit of RESULT.second is set to 0, then the Robin value in this component is well defined.
Parameters
[in]intersectionThe intersection to bind to.
Returns
A tuple. First component is a bool which is true iff any of the boundary related data functions would result in non trivial results. Second component is a bitset of size dimRange which is true if the given component of the system is subject to Dirichlet boundary conditions and false if it is subject to Robin or Neumann boundary conditions. If first is false then the contents of the bitset is undefined.

Member Data Documentation

◆ domainDimRange

constexpr int Dune::ACFem::ModelBase< std::decay_t< GridFunction >::FunctionSpaceType::ScalarFunctionSpaceType , std::decay_t< GridFunction >::FunctionSpaceType::ScalarFunctionSpaceType >::domainDimRange
staticconstexprinherited

◆ rangeDimRange

constexpr int Dune::ACFem::ModelBase< std::decay_t< GridFunction >::FunctionSpaceType::ScalarFunctionSpaceType , std::decay_t< GridFunction >::FunctionSpaceType::ScalarFunctionSpaceType >::rangeDimRange
staticconstexprinherited

The documentation for this class was generated from the following file:
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Jan 3, 23:40, 2025)