Dune Core Modules (2.4.2)

Dune::NonoverlappingBlockPreconditioner< C, P > Class Template Reference

Nonoverlapping parallel preconditioner. More...

#include <dune/istl/novlpschwarz.hh>

Public Types

enum  { category =SolverCategory::nonoverlapping }
 
typedef P::domain_type domain_type
 The domain type of the preconditioner.
 
typedef P::range_type range_type
 The range type of the preconditioner.
 
typedef C communication_type
 The type of the communication object.
 
typedef X::field_type field_type
 The field type of the preconditioner.
 

Public Member Functions

 NonoverlappingBlockPreconditioner (P &prec, const communication_type &c)
 Constructor. More...
 
virtual void pre (domain_type &x, range_type &b)
 Prepare the preconditioner. More...
 
virtual void apply (domain_type &v, const range_type &d)
 Apply the preconditioner. More...
 
virtual void post (domain_type &x)
 Clean up. More...
 

Detailed Description

template<class C, class P>
class Dune::NonoverlappingBlockPreconditioner< C, P >

Nonoverlapping parallel preconditioner.

This is essentially a wrapper that take a sequential preconditoner. In each step the sequential preconditioner is applied and then all owner data points are updated on all other processes.

Member Enumeration Documentation

◆ anonymous enum

template<class C , class P >
anonymous enum
Enumerator
category 

The category the preconditioner is part of.

Constructor & Destructor Documentation

◆ NonoverlappingBlockPreconditioner()

template<class C , class P >
Dune::NonoverlappingBlockPreconditioner< C, P >::NonoverlappingBlockPreconditioner ( P &  prec,
const communication_type c 
)
inline

Constructor.

constructor gets all parameters to operate the prec.

Parameters
precThe sequential preconditioner.
cThe communication object for syncing owner and copy data points. (E.~g. OwnerOverlapCommunication )

Member Function Documentation

◆ apply()

template<class C , class P >
virtual void Dune::NonoverlappingBlockPreconditioner< C, P >::apply ( domain_type v,
const range_type d 
)
inlinevirtual

Apply the preconditioner.

Apply one step of the preconditioner to the system A(v)=d. On entry v=0 and d=b-A(x) (although this might not be computed in that way. On exit v contains the update, i.e one step computes \( v = M^{-1} d \) where \( M \) is the approximate inverse of the operator \( A \) characterizing the preconditioner.

Parameters
[out]vThe update to be computed
dThe current defect.

Implements Dune::Preconditioner< P::domain_type, P::range_type >.

◆ post()

template<class C , class P >
virtual void Dune::NonoverlappingBlockPreconditioner< C, P >::post ( domain_type x)
inlinevirtual

Clean up.

Clean up. This method is called after the last apply call for the linear system to be solved. Memory may be deallocated safely here. x is the solution of the linear equation.

Parameters
xThe right hand side of the equation.

Implements Dune::Preconditioner< P::domain_type, P::range_type >.

◆ pre()

template<class C , class P >
virtual void Dune::NonoverlappingBlockPreconditioner< C, P >::pre ( domain_type x,
range_type b 
)
inlinevirtual

Prepare the preconditioner.

Prepare the preconditioner. A solver solves a linear operator equation A(x)=b by applying one or several steps of the preconditioner. The method pre() is called before the first apply operation. b and x are right hand side and solution vector of the linear system respectively. It may. e.g., scale the system, allocate memory or compute a (I)LU decomposition. Note: The ILU decomposition could also be computed in the constructor or with a separate method of the derived method if several linear systems with the same matrix are to be solved.

Parameters
xThe left hand side of the equation.
bThe right hand side of the equation.

Implements Dune::Preconditioner< P::domain_type, P::range_type >.


The documentation for this class was generated from the following file:
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (Apr 18, 22:30, 2024)