Dune Core Modules (2.4.2)

novlpschwarz.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_ISTL_NOVLPSCHWARZ_HH
4#define DUNE_ISTL_NOVLPSCHWARZ_HH
5
6#include <iostream> // for input/output to shell
7#include <fstream> // for input/output to files
8#include <vector> // STL vector class
9#include <sstream>
10
11#include <cmath> // Yes, we do some math here
12
13#include <dune/common/timer.hh>
14
15#include "io.hh"
16#include "bvector.hh"
17#include "vbvector.hh"
18#include "bcrsmatrix.hh"
19#include "io.hh"
20#include "gsetc.hh"
21#include "ilu.hh"
22#include "operators.hh"
23#include "solvers.hh"
24#include "preconditioners.hh"
25#include "scalarproducts.hh"
26#include "owneroverlapcopy.hh"
27
28namespace Dune {
29
58 template<class M, class X, class Y, class C>
60 {
61 public:
63 typedef M matrix_type;
65 typedef X domain_type;
67 typedef Y range_type;
69 typedef typename X::field_type field_type;
72
73 typedef typename C::PIS PIS;
74 typedef typename C::RI RI;
75 typedef typename RI::RemoteIndexList RIL;
76 typedef typename RI::const_iterator RIIterator;
77 typedef typename RIL::const_iterator RILIterator;
78 typedef typename M::ConstColIterator ColIterator;
79 typedef typename M::ConstRowIterator RowIterator;
80 typedef std::multimap<int,int> MM;
81 typedef std::multimap<int,std::pair<int,RILIterator> > RIMap;
82 typedef typename RIMap::iterator RIMapit;
83
84 enum {
87 };
88
97 : _A_(A), communication(com), buildcomm(true)
98 {}
99
101 virtual void apply (const X& x, Y& y) const
102 {
103 y = 0;
104 novlp_op_apply(x,y,1);
105 communication.addOwnerCopyToOwnerCopy(y,y);
106 }
107
109 virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const
110 {
111 // only apply communication to alpha*A*x to make it consistent,
112 // y already has to be consistent.
113 Y y1(y);
114 y = 0;
115 novlp_op_apply(x,y,alpha);
116 communication.addOwnerCopyToOwnerCopy(y,y);
117 y += y1;
118 }
119
121 virtual const matrix_type& getmat () const
122 {
123 return _A_;
124 }
125
126 void novlp_op_apply (const X& x, Y& y, field_type alpha) const
127 {
128 //get index sets
129 const PIS& pis=communication.indexSet();
130 const RI& ri = communication.remoteIndices();
131
132 // at the beginning make a multimap "bordercontribution".
133 // process has i and j as border dofs but is not the owner
134 // => only contribute to Ax if i,j is in bordercontribution
135 if (buildcomm == true) {
136
137 // set up mask vector
138 if (mask.size()!=static_cast<typename std::vector<double>::size_type>(x.size())) {
139 mask.resize(x.size());
140 for (typename std::vector<double>::size_type i=0; i<mask.size(); i++)
141 mask[i] = 1;
142 for (typename PIS::const_iterator i=pis.begin(); i!=pis.end(); ++i)
143 if (i->local().attribute()==OwnerOverlapCopyAttributeSet::copy)
144 mask[i->local().local()] = 0;
145 else if (i->local().attribute()==OwnerOverlapCopyAttributeSet::overlap)
146 mask[i->local().local()] = 2;
147 }
148
149 for (MM::iterator iter = bordercontribution.begin();
150 iter != bordercontribution.end(); ++iter)
151 bordercontribution.erase(iter);
152 std::map<int,int> owner; //key: local index i, value: process, that owns i
153 RIMap rimap;
154
155 // for each local index make multimap rimap:
156 // key: local index i, data: pair of process that knows i and pointer to RI entry
157 for (RowIterator i = _A_.begin(); i != _A_.end(); ++i)
158 if (mask[i.index()] == 0)
159 for (RIIterator remote = ri.begin(); remote != ri.end(); ++remote) {
160 RIL& ril = *(remote->second.first);
161 for (RILIterator rindex = ril.begin(); rindex != ril.end(); ++rindex)
162 if (rindex->attribute() != OwnerOverlapCopyAttributeSet::overlap)
163 if (rindex->localIndexPair().local().local() == i.index()) {
164 rimap.insert
165 (std::make_pair(i.index(),
166 std::pair<int,RILIterator>(remote->first, rindex)));
167 if(rindex->attribute()==OwnerOverlapCopyAttributeSet::owner)
168 owner.insert(std::make_pair(i.index(),remote->first));
169 }
170 }
171
172 int iowner = 0;
173 for (RowIterator i = _A_.begin(); i != _A_.end(); ++i) {
174 if (mask[i.index()] == 0) {
175 std::map<int,int>::iterator it = owner.find(i.index());
176 iowner = it->second;
177 std::pair<RIMapit, RIMapit> foundiit = rimap.equal_range(i.index());
178 for (ColIterator j = _A_[i.index()].begin(); j != _A_[i.index()].end(); ++j) {
179 if (mask[j.index()] == 0) {
180 bool flag = true;
181 for (RIMapit foundi = foundiit.first; foundi != foundiit.second; ++foundi) {
182 std::pair<RIMapit, RIMapit> foundjit = rimap.equal_range(j.index());
183 for (RIMapit foundj = foundjit.first; foundj != foundjit.second; ++foundj)
184 if (foundj->second.first == foundi->second.first)
185 if (foundj->second.second->attribute() == OwnerOverlapCopyAttributeSet::owner
186 || foundj->second.first == iowner
187 || foundj->second.first < communication.communicator().rank()) {
188 flag = false;
189 continue;
190 }
191 if (flag == false)
192 continue;
193 }
194 // donĀ“t contribute to Ax if
195 // 1. the owner of j has i as interior/border dof
196 // 2. iowner has j as interior/border dof
197 // 3. there is another process with smaller rank that has i and j
198 // as interor/border dofs
199 // if the owner of j does not have i as interior/border dof,
200 // it will not be taken into account
201 if (flag==true)
202 bordercontribution.insert(std::pair<int,int>(i.index(),j.index()));
203 }
204 }
205 }
206 }
207 buildcomm = false;
208 }
209
210 //compute alpha*A*x nonoverlapping case
211 for (RowIterator i = _A_.begin(); i != _A_.end(); ++i) {
212 if (mask[i.index()] == 0) {
213 //dof doesn't belong to process but is border (not ghost)
214 for (ColIterator j = _A_[i.index()].begin(); j != _A_[i.index()].end(); ++j) {
215 if (mask[j.index()] == 1) //j is owner => then sum entries
216 (*j).usmv(alpha,x[j.index()],y[i.index()]);
217 else if (mask[j.index()] == 0) {
218 std::pair<MM::iterator, MM::iterator> itp =
219 bordercontribution.equal_range(i.index());
220 for (MM::iterator it = itp.first; it != itp.second; ++it)
221 if ((*it).second == (int)j.index())
222 (*j).usmv(alpha,x[j.index()],y[i.index()]);
223 }
224 }
225 }
226 else if (mask[i.index()] == 1) {
227 for (ColIterator j = _A_[i.index()].begin(); j != _A_[i.index()].end(); ++j)
228 if (mask[j.index()] != 2)
229 (*j).usmv(alpha,x[j.index()],y[i.index()]);
230 }
231 }
232 }
233
234 private:
235 const matrix_type& _A_;
236 const communication_type& communication;
237 mutable bool buildcomm;
238 mutable std::vector<double> mask;
239 mutable std::multimap<int,int> bordercontribution;
240 };
241
253 template<class X, class C>
255 {
256 public:
258 typedef X domain_type;
260 typedef typename X::field_type field_type;
263
265 enum {category=SolverCategory::nonoverlapping};
266
272 : communication(com)
273 {}
274
279 virtual field_type dot (const X& x, const X& y)
280 {
281 field_type result;
282 communication.dot(x,y,result);
283 return result;
284 }
285
289 virtual double norm (const X& x)
290 {
291 return communication.norm(x);
292 }
293
296 void make_consistent (X& x) const
297 {
298 communication.copyOwnerToAll(x,x);
299 }
300
301 private:
302 const communication_type& communication;
303 };
304
305 template<class X, class C>
306 struct ScalarProductChooser<X,C,SolverCategory::nonoverlapping>
307 {
309 typedef NonoverlappingSchwarzScalarProduct<X,C> ScalarProduct;
311 typedef C communication_type;
312
313 enum {
316 };
317
318 static ScalarProduct* construct(const communication_type& comm)
319 {
320 return new ScalarProduct(comm);
321 }
322 };
323
324 namespace Amg
325 {
326 template<class T> class ConstructionTraits;
327 }
328
338 template<class C, class P>
340 : public Dune::Preconditioner<typename P::domain_type,typename P::range_type> {
342 public:
344 typedef typename P::domain_type domain_type;
346 typedef typename P::range_type range_type;
349
350 // define the category
351 enum {
354 };
355
364 : preconditioner(prec), communication(c)
365 {}
366
372 virtual void pre (domain_type& x, range_type& b)
373 {
374 preconditioner.pre(x,b);
375 }
376
382 virtual void apply (domain_type& v, const range_type& d)
383 {
384 // block preconditioner equivalent to WrappedPreconditioner from
385 // pdelab/backend/ovlpistsolverbackend.hh,
386 // but not to BlockPreconditioner from schwarz.hh
387 preconditioner.apply(v,d);
388 communication.addOwnerCopyToOwnerCopy(v,v);
389 }
390
396 virtual void post (domain_type& x)
397 {
398 preconditioner.post(x);
399 }
400
401 private:
403 P& preconditioner;
404
406 const communication_type& communication;
407 };
408
411} // end namespace
412
413#endif
Implementation of the BCRSMatrix class.
This file implements a vector space as a tensor product of a given vector space. The number of compon...
Traits class for generically constructing non default constructable types.
Definition: construction.hh:38
A linear operator exporting itself in matrix form.
Definition: operators.hh:94
Nonoverlapping parallel preconditioner.
Definition: novlpschwarz.hh:340
@ category
The category the preconditioner is part of.
Definition: novlpschwarz.hh:353
virtual void apply(domain_type &v, const range_type &d)
Apply the preconditioner.
Definition: novlpschwarz.hh:382
P::range_type range_type
The range type of the preconditioner.
Definition: novlpschwarz.hh:346
virtual void post(domain_type &x)
Clean up.
Definition: novlpschwarz.hh:396
C communication_type
The type of the communication object.
Definition: novlpschwarz.hh:348
NonoverlappingBlockPreconditioner(P &prec, const communication_type &c)
Constructor.
Definition: novlpschwarz.hh:363
virtual void pre(domain_type &x, range_type &b)
Prepare the preconditioner.
Definition: novlpschwarz.hh:372
P::domain_type domain_type
The domain type of the preconditioner.
Definition: novlpschwarz.hh:344
A nonoverlapping operator with communication object.
Definition: novlpschwarz.hh:60
C communication_type
The type of the communication object.
Definition: novlpschwarz.hh:71
virtual void apply(const X &x, Y &y) const
apply operator to x:
Definition: novlpschwarz.hh:101
X domain_type
The type of the domain.
Definition: novlpschwarz.hh:65
virtual const matrix_type & getmat() const
get matrix via *
Definition: novlpschwarz.hh:121
Y range_type
The type of the range.
Definition: novlpschwarz.hh:67
M matrix_type
The type of the matrix we operate on.
Definition: novlpschwarz.hh:63
virtual void applyscaleadd(field_type alpha, const X &x, Y &y) const
apply operator to x, scale and add:
Definition: novlpschwarz.hh:109
@ category
The solver category.
Definition: novlpschwarz.hh:86
X::field_type field_type
The field type of the range.
Definition: novlpschwarz.hh:69
NonoverlappingSchwarzOperator(const matrix_type &A, const communication_type &com)
constructor: just store a reference to a matrix.
Definition: novlpschwarz.hh:96
Nonoverlapping Scalar Product with communication object.
Definition: novlpschwarz.hh:255
virtual double norm(const X &x)
Norm of a right-hand side vector. The vector must be consistent on the interior+border partition.
Definition: novlpschwarz.hh:289
X domain_type
The type of the domain.
Definition: novlpschwarz.hh:258
X::field_type field_type
The type of the range.
Definition: novlpschwarz.hh:260
C communication_type
The type of the communication object.
Definition: novlpschwarz.hh:262
void make_consistent(X &x) const
make additive vector consistent
Definition: novlpschwarz.hh:296
virtual field_type dot(const X &x, const X &y)
Dot product of two vectors. It is assumed that the vectors are consistent on the interior+border part...
Definition: novlpschwarz.hh:279
NonoverlappingSchwarzScalarProduct(const communication_type &com)
Constructor.
Definition: novlpschwarz.hh:271
Base class for matrix free definition of preconditioners.
Definition: preconditioner.hh:26
Base class for scalar product and norm computation.
Definition: scalarproducts.hh:44
Simple iterative methods like Jacobi, Gauss-Seidel, SOR, SSOR, etc. in a generic way.
Some generic functions for pretty printing vectors and matrices.
Dune namespace.
Definition: alignment.hh:10
Define general, extensible interface for operators. The available implementation wraps a matrix.
Classes providing communication interfaces for overlapping Schwarz methods.
Define general preconditioner interface.
Define base class for scalar product and norm.
Implementations of the inverse operator interface.
C communication_type
The type of the communication object.
Definition: scalarproducts.hh:79
@ solverCategory
The solver category.
Definition: scalarproducts.hh:83
@ nonoverlapping
Category for on overlapping solvers.
Definition: solvercategory.hh:23
A simple timing class.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 20, 23:31, 2024)