DUNE PDELab (2.8)

Dune::RefinedP0LocalBasis< D, R, dim > Class Template Reference

Uniformly refined constant shape functions on a unit simplex in R^dim. More...

#include <dune/localfunctions/refined/refinedp0/refinedp0localbasis.hh>

Public Types

typedef LocalBasisTraits< D, dim, Dune::FieldVector< D, dim >, R, 1, Dune::FieldVector< R, 1 >, Dune::FieldMatrix< R, 1, dim > > Traits
 export type traits for function signature
 

Public Member Functions

unsigned int size () const
 number of shape functions
 
void evaluateFunction (const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
 Evaluate all shape functions.
 
void partial (const std::array< unsigned int, dim > &order, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
 Evaluate partial derivatives of all shape functions.
 
unsigned int order () const
 Polynomial order of the shape functions. More...
 

Detailed Description

template<class D, class R, int dim>
class Dune::RefinedP0LocalBasis< D, R, dim >

Uniformly refined constant shape functions on a unit simplex in R^dim.

This shape function set mimicks the P0 shape functions that you would get on a uniformly refined grid. Hence these shape functions are only piecewise constant!

Shape functions like these are necessary for hierarchical error estimators for certain nonlinear problems.

The functions are associated with the subelements as defined in RefinedSimplexLocalBasis

Template Parameters
DType to represent the field in the domain.
RType to represent the field in the range.
dimDimension of domain space

Member Function Documentation

◆ order()

template<class D , class R , int dim>
unsigned int Dune::RefinedP0LocalBasis< D, R, dim >::order ( ) const
inline

Polynomial order of the shape functions.

Doesn't really apply: these shape functions are only piecewise constant

Referenced by Dune::RefinedP0LocalBasis< D, R, dim >::partial().


The documentation for this class was generated from the following file:
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)