4#ifndef DUNE_PDELAB_FINITEELEMENT_L2ORTHONORMAL_HH
5#define DUNE_PDELAB_FINITEELEMENT_L2ORTHONORMAL_HH
19#include<dune/geometry/referenceelements.hh>
23#include<dune/localfunctions/common/localbasis.hh>
24#include<dune/localfunctions/common/localkey.hh>
25#include<dune/localfunctions/common/localfiniteelementtraits.hh>
41 typedef GMPField<512> DefaultComputationalFieldType;
43 typedef double DefaultComputationalFieldType;
51 class MultiIndex :
public std::array<int,d>
55 MultiIndex () :
std::array<int,d>()
62 constexpr int pk_size (
int k,
int d)
67 for (
int j=0; j<=k; j++)
68 n += pk_size(k-j,d-1);
73 inline int pk_size_exact (
int k,
int d)
78 return pk_size(k,d)-pk_size(k-1,d);
83 template<
int k,
int d>
93 void pk_enumerate_multiindex (MultiIndex<d>& alpha,
int& count,
int norm,
int dim,
int k,
int i)
99 alpha[dim]=k; count++;
101 if (count==i)
return;
104 for (
int m=k-1; m>=0; m--)
108 pk_enumerate_multiindex(alpha,count,norm+m,dim+1,k-m,i);
109 if (count==i)
return;
118 void pk_multiindex (
int i, MultiIndex<d>& alpha)
120 for (
int j=0; j<d; j++) alpha[j] = 0;
122 for (
int k=1; k<25; k++)
123 if (i>=pk_size(k-1,d) && i<pk_size(k,d))
126 pk_enumerate_multiindex(alpha,count,0,0,k,i-pk_size(k-1,d));
133 constexpr int qk_size (
int k,
int d)
136 for (
int i=0; i<d; ++i)
143 void qk_multiindex (
int i,
int k, MultiIndex<d>& alpha)
145 for (
int j = 0; j<d; ++j) {
146 alpha[j] = i % (k+1);
158 template <BasisType basisType>
162 struct BasisTraits<BasisType::Pk>
164 template <
int k,
int d>
172 template <
int k,
int d>
180 static int size(
int k,
int d)
186 static void multiindex(
int i,
int k, MultiIndex<d>& alpha)
188 pk_multiindex(i,alpha);
193 struct BasisTraits<BasisType::Qk>
195 template <
int k,
int d>
203 template <
int k,
int d>
212 static int size(
int k,
int d)
218 static void multiindex(
int i,
int k, MultiIndex<d>& alpha)
220 return qk_multiindex(i,k,alpha);
238 for (
long i=k+1; i<=n; i++) nominator *= i;
240 for (
long i=2; i<=n-k; i++) denominator *= i;
241 return nominator/denominator;
246 for (
long i=n-k+1; i<=n; i++) nominator *= i;
248 for (
long i=2; i<=k; i++) denominator *= i;
249 return nominator/denominator;
259 template<
typename ComputationFieldType, Dune::GeometryType::BasicType bt,
int d>
264 ComputationFieldType
integrate (
const MultiIndex<d>& a)
const
272 template<
typename ComputationFieldType,
int d>
277 ComputationFieldType
integrate (
const MultiIndex<d>& a)
const
279 ComputationFieldType result(1.0);
280 for (
int i=0; i<d; i++)
282 ComputationFieldType exponent(a[i]+1);
283 result = result/exponent;
291 template<
typename ComputationFieldType>
296 ComputationFieldType
integrate (
const MultiIndex<1>& a)
const
298 ComputationFieldType one(1.0);
299 ComputationFieldType exponent0(a[0]+1);
300 return one/exponent0;
306 template<
typename ComputationFieldType>
311 ComputationFieldType
integrate (
const MultiIndex<2>& a)
const
313 ComputationFieldType sum(0.0);
314 for (
int k=0; k<=a[1]+1; k++)
319 ComputationFieldType denom(a[0]+k+1);
320 sum = sum + (nom/denom);
322 ComputationFieldType denom(a[1]+1);
329 template<
typename ComputationFieldType>
334 ComputationFieldType
integrate (
const MultiIndex<3>& a)
const
336 ComputationFieldType sumk(0.0);
337 for (
int k=0; k<=a[2]+1; k++)
342 ComputationFieldType denom(a[1]+k+1);
343 sumk = sumk + (nom/denom);
345 ComputationFieldType sumj(0.0);
346 for (
int j=0; j<=a[1]+a[2]+2; j++)
351 ComputationFieldType denom(a[0]+j+1);
352 sumj = sumj + (nom/denom);
354 ComputationFieldType denom(a[2]+1);
355 return sumk*sumj/denom;
364 template<
typename F,
int d>
367 template<
typename X,
typename A>
368 static F compute (
const X& x,
const A& a)
371 for (
int i=0; i<a[d]; i++)
380 template<
typename X,
typename A>
381 static F compute (
const X& x,
const A& a)
384 for (
int i=0; i<a[0]; i++)
419 template<
typename FieldType,
int k,
int d, Dune::GeometryType::BasicType bt,
typename ComputationFieldType=FieldType, BasisType basisType = BasisType::Pk>
422 typedef BasisTraits<basisType> Traits;
424 enum{ n = Traits::template Size<k,d>::value };
432 for (
int i=0; i<d; ++i)
435 for (
int i=0; i<n; i++)
437 alpha[i].reset(
new MultiIndex<d>());
438 Traits::multiindex(i,k,*alpha[i]);
450 for (
int i=0; i<d; ++i)
453 for (
int i=0; i<n; i++)
455 alpha[i].reset(
new MultiIndex<d>());
456 Traits::multiindex(i,k,*alpha[i]);
466 return Traits::size(l,d);
470 template<
typename Po
int,
typename Result>
471 void evaluateFunction (
const Point& x, Result& r)
const
473 std::fill(r.begin(),r.end(),0.0);
474 for (
int j=0; j<n; ++j)
477 for (
int i=j; i<n; ++i)
478 r[i] += (*coeffs)[i][j] * monomial_value;
483 template<
typename Po
int,
typename Result>
484 void evaluateJacobian (
const Point& x, Result& r)
const
486 std::fill(r.begin(),r.end(),0.0);
488 for (
int j=0; j<n; ++j)
491 for (
int i=j; i<n; ++i)
492 for (
int s=0; s<d; ++s)
493 r[i][0][s] += (*gradcoeffs[s])[i][j]*monomial_value;
498 template<
typename Po
int,
typename Result>
499 void evaluateFunction (
int l,
const Point& x, Result& r)
const
504 for (
int i=0; i<Traits::size(l,d); i++)
507 for (
int j=0; j<=i; j++)
514 template<
typename Po
int,
typename Result>
515 void evaluateJacobian (
int l,
const Point& x, Result& r)
const
520 for (
int i=0; i<Traits::size(l,d); i++)
523 for (
int s=0; s<d; s++)
526 for (
int j=0; j<=i; j++)
529 for (
int s=0; s<d; s++) r[i][0][s] = sum[s];
535 std::array<std::shared_ptr<MultiIndex<d> >,n> alpha;
536 std::shared_ptr<LowprecMat> coeffs;
537 std::array<std::shared_ptr<LowprecMat>,d > gradcoeffs;
540 void orthonormalize()
555 for (
int s=0; s<d; s++)
556 for (
int i=0; i<n; i++)
557 for (
int j=0; j<=i; j++)
558 (*gradcoeffs[s])[i][j] = 0;
559 for (
int i=0; i<n; i++)
560 for (
int j=0; j<=i; j++)
561 for (
int s=0; s<d; s++)
562 if ((*alpha[j])[s]>0)
564 MultiIndex<d> beta = *alpha[j];
565 FieldType factor = beta[s];
567 int l = invert_index(beta);
568 (*gradcoeffs[s])[i][l] += (*coeffs)[i][j]*factor;
585 int invert_index (MultiIndex<d>& a)
587 for (
int i=0; i<n; i++)
590 for (
int j=0; j<d; j++)
591 if (a[j]!=(*alpha[i])[j]) found=
false;
604 for (
int i=0; i<n; i++)
605 for (
int j=0; j<n; j++)
607 c[i][j] = ComputationFieldType(1.0);
609 c[i][j] = ComputationFieldType(0.0);
613 for (
int i=0; i<n; i++)
616 ComputationFieldType bi[n];
619 for (
int j=0; j<i; j++)
622 bi[j] = ComputationFieldType(0.0);
623 for (
int l=0; l<=j; l++)
626 for (
int m=0; m<d; m++) a[m] = (*alpha[i])[m] + (*alpha[l])[m];
627 bi[j] = bi[j] + c[j][l]*integrator.
integrate(a);
629 for (
int l=0; l<=j; l++)
630 c[i][l] = c[i][l] - bi[j]*c[j][l];
634 ComputationFieldType s2(0.0);
636 for (
int m=0; m<d; m++) a[m] = (*alpha[i])[m] + (*alpha[i])[m];
638 for (
int j=0; j<i; j++)
639 s2 = s2 - bi[j]*bi[j];
640 ComputationFieldType s(1.0);
643 for (
int l=0; l<=i; l++)
648 for (
int i=0; i<n; i++)
649 for (
int j=0; j<n; j++)
650 (*coeffs)[i][j] = c[i][j];
662 template<
class D,
class R,
int k,
int d, Dune::GeometryType::BasicType bt,
typename ComputationFieldType=Dune::PB::DefaultComputationalFieldType, PB::BasisType basisType = PB::BasisType::Pk>
665 typedef PB::BasisTraits<basisType> BasisTraits;
671 typedef Dune::LocalBasisTraits<D,d,Dune::FieldVector<D,d>,R,1,
Dune::FieldVector<R,1>,
Dune::FieldMatrix<R,1,d> > Traits;
672 enum{ n = BasisTraits::template Size<k,d>::value };
676 OPBLocalBasis (
int order_) : opb(),
gt(bt,d) {}
679 OPBLocalBasis (
int order_,
const LFE & lfe) : opb(lfe),
gt(bt,d) {}
683 unsigned int size ()
const {
return n; }
687 std::vector<typename Traits::RangeType>& out)
const {
695 std::vector<typename Traits::JacobianType>& out)
const {
701 void partial(
const std::array<unsigned int, Traits::dimDomain>& order,
703 std::vector<typename Traits::RangeType>& out)
const {
705 if (totalOrder == 0) {
706 evaluateFunction(in, out);
708 DUNE_THROW(NotImplemented,
"Desired derivative order is not implemented");
713 unsigned int order ()
const {
714 return BasisTraits::template Order<k,d>::value;
720 template<
int k,
int d, PB::BasisType basisType = PB::BasisType::Pk>
721 class OPBLocalCoefficients
723 enum{ n = PB::BasisTraits<basisType>::template Size<k,d>::value };
725 OPBLocalCoefficients (
int order_) : li(n) {
730 std::size_t
size ()
const {
return n; }
738 std::vector<Dune::LocalKey> li;
742 class OPBLocalInterpolation
747 OPBLocalInterpolation (
const LB& lb_,
int order_) : lb(lb_) {}
750 template<
typename F,
typename C>
751 void interpolate (
const F& f, std::vector<C>& out)
const
754 typedef typename FieldTraits<typename LB::Traits::RangeFieldType>::real_type RealFieldType;
756 typedef typename LB::Traits::RangeType RangeType;
757 const int d = LB::Traits::dimDomain;
763 for (
int i=0; i<LB::n; i++) out[i] = 0.0;
767 it=rule.begin(); it!=rule.end(); ++it)
770 typename LB::Traits::DomainType x;
772 for (
int i=0; i<d; i++) x[i] = it->position()[i];
776 std::vector<RangeType> phi(LB::n);
777 lb.evaluateFunction(it->position(),phi);
780 for (
int i=0; i<LB::n; i++)
781 out[i] += y*phi[i]*it->weight();
786 template<
class D,
class R,
int k,
int d, Dune::GeometryType::BasicType bt,
typename ComputationFieldType=Dune::PB::DefaultComputationalFieldType, PB::BasisType basisType = PB::BasisType::Pk>
787 class OPBLocalFiniteElement
790 OPBLocalBasis<D,R,k,d,bt,ComputationFieldType,basisType> basis;
791 OPBLocalCoefficients<k,d,basisType> coefficients;
792 OPBLocalInterpolation<OPBLocalBasis<D,R,k,d,bt,ComputationFieldType,basisType> > interpolation;
795 OPBLocalCoefficients<k,d,basisType>,
796 OPBLocalInterpolation<OPBLocalBasis<D,R,k,d,bt,ComputationFieldType,basisType> > > Traits;
800 OPBLocalFiniteElement ()
801 :
gt(bt,d), basis(k), coefficients(k), interpolation(basis,k)
805 explicit OPBLocalFiniteElement (
const LFE & lfe)
806 :
gt(bt,d), basis(k, lfe), coefficients(k), interpolation(basis,k)
811 OPBLocalFiniteElement (
const OPBLocalFiniteElement & other)
812 :
gt(other.
gt), basis(other.basis), coefficients(other.coefficients), interpolation(basis,k)
827 return interpolation;
832 std::size_t
size()
const
839 OPBLocalFiniteElement* clone ()
const {
840 return new OPBLocalFiniteElement(*
this);
A dense n x m matrix.
Definition: fmatrix.hh:117
vector space out of a tensor product of fields.
Definition: fvector.hh:92
Unique label for each type of entities that can occur in DUNE grids.
Definition: type.hh:114
@ cube
Cube element in any nonnegative dimension.
Definition: type.hh:122
@ simplex
Simplicial element in any nonnegative dimension.
Definition: type.hh:121
Describe position of one degree of freedom.
Definition: localkey.hh:24
Default exception for dummy implementations.
Definition: exceptions.hh:355
ComputationFieldType integrate(const MultiIndex< d > &a) const
integrate one monomial
Definition: l2orthonormal.hh:277
ComputationFieldType integrate(const MultiIndex< 1 > &a) const
integrate one monomial
Definition: l2orthonormal.hh:296
ComputationFieldType integrate(const MultiIndex< 2 > &a) const
integrate one monomial
Definition: l2orthonormal.hh:311
ComputationFieldType integrate(const MultiIndex< 3 > &a) const
integrate one monomial
Definition: l2orthonormal.hh:334
Integrate monomials over the reference element.
Definition: l2orthonormal.hh:261
ComputationFieldType integrate(const MultiIndex< d > &a) const
integrate one monomial
Definition: l2orthonormal.hh:264
Integrate monomials over the reference element.
Definition: l2orthonormal.hh:421
Definition: polynomialbasis.hh:63
void evaluateFunction(const typename Traits::DomainType &x, std::vector< typename Traits::RangeType > &out) const
Evaluate all shape functions.
Definition: polynomialbasis.hh:117
void evaluateJacobian(const typename Traits::DomainType &x, std::vector< typename Traits::JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: polynomialbasis.hh:125
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:214
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:326
Default exception class for range errors.
Definition: exceptions.hh:346
A few common exception classes.
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
Wrapper for the GNU multiprecision (GMP) library.
#define DUNE_NO_DEPRECATED_END
Ignore deprecation warnings (end)
Definition: deprecated.hh:38
#define DUNE_NO_DEPRECATED_BEGIN
Ignore deprecation warnings (start)
Definition: deprecated.hh:32
#define DUNE_THROW(E,...)
Definition: exceptions.hh:312
bool gt(const T &first, const T &second, typename EpsilonType< T >::Type epsilon)
test if first greater than second
Definition: float_cmp.cc:158
void interpolate(const F &f, const GFS &gfs, XG &xg)
interpolation from a given grid function
Definition: interpolate.hh:177
constexpr T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:280
Dune namespace.
Definition: alignedallocator.hh:13
constexpr std::integral_constant< std::size_t, sizeof...(II)> size(std::integer_sequence< T, II... >)
Return the size of the sequence.
Definition: integersequence.hh:75
static constexpr T binomial(const T &n, const T &k) noexcept
calculate the binomial coefficient n over k as a constexpr
Definition: math.hh:131
constexpr int sign(const T &val)
Return the sign of the value.
Definition: math.hh:180
Type traits for LocalBasisVirtualInterface.
Definition: localbasis.hh:35
D DomainType
domain type
Definition: localbasis.hh:43
traits helper struct
Definition: localfiniteelementtraits.hh:13
LB LocalBasisType
Definition: localfiniteelementtraits.hh:16
LC LocalCoefficientsType
Definition: localfiniteelementtraits.hh:20
LI LocalInterpolationType
Definition: localfiniteelementtraits.hh:24
compute
Definition: l2orthonormal.hh:366
A unique label for each type of element that can occur in a grid.