DUNE PDELab (unstable)

l2orthonormal.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3
4#ifndef DUNE_PDELAB_FINITEELEMENT_L2ORTHONORMAL_HH
5#define DUNE_PDELAB_FINITEELEMENT_L2ORTHONORMAL_HH
6
7#include<array>
8#include<iostream>
9#include<algorithm>
10#include<memory>
11#include<numeric>
12
18
19#include<dune/geometry/referenceelements.hh>
22
23#include<dune/localfunctions/common/localbasis.hh>
24#include<dune/localfunctions/common/localkey.hh>
25#include<dune/localfunctions/common/localfiniteelementtraits.hh>
26
37namespace Dune {
38 namespace PB {
39
40#if HAVE_GMP
41 typedef GMPField<512> DefaultComputationalFieldType;
42#else
43 typedef double DefaultComputationalFieldType;
44#endif
45
46 //=====================================================
47 // Type to represent a multiindex in d dimensions
48 //=====================================================
49
50 template<int d>
51 class MultiIndex : public std::array<int,d>
52 {
53 public:
54
55 MultiIndex () : std::array<int,d>()
56 {
57 }
58
59 };
60
61 // the number of polynomials of at most degree k in space dimension d
62 constexpr int pk_size (int k, int d)
63 {
64 if (k==0) return 1;
65 if (d==1) return k+1;
66 int n=0;
67 for (int j=0; j<=k; j++)
68 n += pk_size(k-j,d-1);
69 return n;
70 }
71
72 // the number of polynomials of exactly degree k in space dimension d (as run-time function)
73 inline int pk_size_exact (int k, int d)
74 {
75 if (k==0)
76 return 1;
77 else
78 return pk_size(k,d)-pk_size(k-1,d);
79 }
80
81 // k is the polynomial degree and d is the space dimension
82 // then PkSize<k,d> is the number of polynomials of at most total degree k.
83 template<int k, int d>
84 struct PkSize
85 {
86 enum{
87 value=pk_size(k,d)
88 };
89 };
90
91 // enumerate all multiindices of degree k and find the i'th
92 template<int d>
93 void pk_enumerate_multiindex (MultiIndex<d>& alpha, int& count, int norm, int dim, int k, int i)
94 {
95 // check if dim is valid
96 if (dim>=d) return;
97
98 // put all k to current dimension and check
99 alpha[dim]=k; count++; // alpha has correct norm
100 // std::cout << "dadi alpha=" << alpha << " count=" << count << " norm=" << norm+k << " dim=" << dim << " k=" << k << " i=" << i << std::endl;
101 if (count==i) return; // found the index
102
103 // search recursively
104 for (int m=k-1; m>=0; m--)
105 {
106 alpha[dim]=m;
107 //std::cout << "dada alpha=" << alpha << " count=" << count << " norm=" << norm+m << " dim=" << dim << " k=" << k << " i=" << i << std::endl;
108 pk_enumerate_multiindex(alpha,count,norm+m,dim+1,k-m,i);
109 if (count==i) return;
110 }
111
112 // reset if index is not yet found
113 alpha[dim]=0;
114 }
115
116 // map integer 0<=i<pk_size(k,d) to multiindex
117 template<int d>
118 void pk_multiindex (int i, MultiIndex<d>& alpha)
119 {
120 for (int j=0; j<d; j++) alpha[j] = 0; // set alpha to 0
121 if (i==0) return; // handle case i==0 and k==0
122 for (int k=1; k<25; k++)
123 if (i>=pk_size(k-1,d) && i<pk_size(k,d))
124 {
125 int count = -1;
126 pk_enumerate_multiindex(alpha,count,0,0,k,i-pk_size(k-1,d));
127 return;
128 }
129 DUNE_THROW(Dune::NotImplemented,"Polynomial degree greater than 24 in pk_multiindex");
130 }
131
132 // the number of polynomials of at most degree k in space dimension d (as run-time function)
133 constexpr int qk_size (int k, int d)
134 {
135 int n = 1;
136 for (int i=0; i<d; ++i)
137 n *= (k+1);
138 return n;
139 }
140
141 // map integer 0<=i<qk_size(k,d) to multiindex
142 template<int d>
143 void qk_multiindex (int i, int k, MultiIndex<d>& alpha)
144 {
145 for (int j = 0; j<d; ++j) {
146 alpha[j] = i % (k+1);
147 i /= (k+1);
148 }
149 }
150
151 //=====================================================
152 // Traits classes to group Pk and Qk specifics
153 //=====================================================
154 enum BasisType {
155 Pk, Qk
156 };
157
158 template <BasisType basisType>
159 struct BasisTraits;
160
161 template <>
162 struct BasisTraits<BasisType::Pk>
163 {
164 template <int k, int d>
165 struct Size
166 {
167 enum{
168 value = pk_size(k,d)
169 };
170 };
171
172 template <int k, int d>
173 struct Order
174 {
175 enum{
176 value = k
177 };
178 };
179
180 static int size(int k, int d)
181 {
182 return pk_size(k,d);
183 }
184
185 template <int d>
186 static void multiindex(int i, int k, MultiIndex<d>& alpha)
187 {
188 pk_multiindex(i,alpha);
189 }
190 };
191
192 template <>
193 struct BasisTraits<BasisType::Qk>
194 {
195 template <int k, int d>
196 struct Size
197 {
198 enum{
199 value = qk_size(k,d)
200 };
201 };
202
203 template <int k, int d>
204 struct Order
205 {
206 enum{
207 // value = d*k
208 value = k
209 };
210 };
211
212 static int size(int k, int d)
213 {
214 return qk_size(k,d);
215 }
216
217 template <int d>
218 static void multiindex(int i, int k, MultiIndex<d>& alpha)
219 {
220 return qk_multiindex(i,k,alpha);
221 }
222 };
223
224 //=====================================================
225 // Integration kernels for monomials
226 //=====================================================
227
229 inline long binomial (long n, long k)
230 {
231 // pick the shorter version of
232 // n*(n-1)*...*(k+1)/((n-k)*(n-k-1)*...*1)
233 // and
234 // n*(n-1)*...*(n-k+1)/(k*(k-1)*...*1)
235 if (2*k>=n)
236 {
237 long nominator=1;
238 for (long i=k+1; i<=n; i++) nominator *= i;
239 long denominator=1;
240 for (long i=2; i<=n-k; i++) denominator *= i;
241 return nominator/denominator;
242 }
243 else
244 {
245 long nominator=1;
246 for (long i=n-k+1; i<=n; i++) nominator *= i;
247 long denominator=1;
248 for (long i=2; i<=k; i++) denominator *= i;
249 return nominator/denominator;
250 }
251 }
252
259 template<typename ComputationFieldType, Dune::GeometryType::BasicType bt, int d>
261 {
262 public:
264 ComputationFieldType integrate (const MultiIndex<d>& a) const
265 {
266 DUNE_THROW(Dune::NotImplemented,"non-specialized version of MonomalIntegrator called. Please implement.");
267 }
268 };
269
272 template<typename ComputationFieldType, int d>
273 class MonomialIntegrator<ComputationFieldType,Dune::GeometryType::cube,d>
274 {
275 public:
277 ComputationFieldType integrate (const MultiIndex<d>& a) const
278 {
279 ComputationFieldType result(1.0);
280 for (int i=0; i<d; i++)
281 {
282 ComputationFieldType exponent(a[i]+1);
283 result = result/exponent;
284 }
285 return result;
286 }
287 };
288
291 template<typename ComputationFieldType>
292 class MonomialIntegrator<ComputationFieldType,Dune::GeometryType::simplex,1>
293 {
294 public:
296 ComputationFieldType integrate (const MultiIndex<1>& a) const
297 {
298 ComputationFieldType one(1.0);
299 ComputationFieldType exponent0(a[0]+1);
300 return one/exponent0;
301 }
302 };
303
306 template<typename ComputationFieldType>
307 class MonomialIntegrator<ComputationFieldType,Dune::GeometryType::simplex,2>
308 {
309 public:
311 ComputationFieldType integrate (const MultiIndex<2>& a) const
312 {
313 ComputationFieldType sum(0.0);
314 for (int k=0; k<=a[1]+1; k++)
315 {
316 int sign=1;
317 if (k%2==1) sign=-1;
318 ComputationFieldType nom(sign*binomial(a[1]+1,k));
319 ComputationFieldType denom(a[0]+k+1);
320 sum = sum + (nom/denom);
321 }
322 ComputationFieldType denom(a[1]+1);
323 return sum/denom;
324 }
325 };
326
329 template<typename ComputationFieldType>
330 class MonomialIntegrator<ComputationFieldType,Dune::GeometryType::simplex,3>
331 {
332 public:
334 ComputationFieldType integrate (const MultiIndex<3>& a) const
335 {
336 ComputationFieldType sumk(0.0);
337 for (int k=0; k<=a[2]+1; k++)
338 {
339 int sign=1;
340 if (k%2==1) sign=-1;
341 ComputationFieldType nom(sign*binomial(a[2]+1,k));
342 ComputationFieldType denom(a[1]+k+1);
343 sumk = sumk + (nom/denom);
344 }
345 ComputationFieldType sumj(0.0);
346 for (int j=0; j<=a[1]+a[2]+2; j++)
347 {
348 int sign=1;
349 if (j%2==1) sign=-1;
350 ComputationFieldType nom(sign*binomial(a[1]+a[2]+2,j));
351 ComputationFieldType denom(a[0]+j+1);
352 sumj = sumj + (nom/denom);
353 }
354 ComputationFieldType denom(a[2]+1);
355 return sumk*sumj/denom;
356 }
357 };
358
359 //=====================================================
360 // construct orthonormal basis
361 //=====================================================
362
364 template<typename F, int d>
366 {
367 template<typename X, typename A>
368 static F compute (const X& x, const A& a)
369 {
370 F prod(1.0);
371 for (int i=0; i<a[d]; i++)
372 prod = prod*x[d];
373 return prod*MonomialEvaluate<F,d-1>::compute(x,a);
374 }
375 };
376
377 template<typename F>
378 struct MonomialEvaluate<F,0>
379 {
380 template<typename X, typename A>
381 static F compute (const X& x, const A& a)
382 {
383 F prod(1.0);
384 for (int i=0; i<a[0]; i++)
385 prod = prod*x[0];
386 return prod;
387 }
388 };
389
419 template<typename FieldType, int k, int d, Dune::GeometryType::BasicType bt, typename ComputationFieldType=FieldType, BasisType basisType = BasisType::Pk>
421 {
422 typedef BasisTraits<basisType> Traits;
423 public:
424 enum{ n = Traits::template Size<k,d>::value };
427
428 // construct orthonormal basis
430 : coeffs(new LowprecMat)
431 {
432 for (int i=0; i<d; ++i)
433 gradcoeffs[i].reset(new LowprecMat());
434 // compute index to multiindex map
435 for (int i=0; i<n; i++)
436 {
437 alpha[i].reset(new MultiIndex<d>());
438 Traits::multiindex(i,k,*alpha[i]);
439 //std::cout << "i=" << i << " alpha_i=" << alpha[i] << std::endl;
440 }
441
442 orthonormalize();
443 }
444
445 // construct orthonormal basis from an other basis
446 template<class LFE>
447 OrthonormalPolynomialBasis (const LFE & lfe)
448 : coeffs(new LowprecMat)
449 {
450 for (int i=0; i<d; ++i)
451 gradcoeffs[i].reset(new LowprecMat());
452 // compute index to multiindex map
453 for (int i=0; i<n; i++)
454 {
455 alpha[i].reset(new MultiIndex<d>());
456 Traits::multiindex(i,k,*alpha[i]);
457 //std::cout << "i=" << i << " alpha_i=" << alpha[i] << std::endl;
458 }
459
460 orthonormalize();
461 }
462
463 // return dimension of P_l
464 int size (int l)
465 {
466 return Traits::size(l,d);
467 }
468
469 // evaluate all basis polynomials at given point
470 template<typename Point, typename Result>
471 void evaluateFunction (const Point& x, Result& r) const
472 {
473 std::fill(r.begin(),r.end(),0.0);
474 for (int j=0; j<n; ++j)
475 {
476 const FieldType monomial_value = MonomialEvaluate<FieldType,d-1>::compute(x,*alpha[j]);
477 for (int i=j; i<n; ++i)
478 r[i] += (*coeffs)[i][j] * monomial_value;
479 }
480 }
481
482 // evaluate all basis polynomials at given point
483 template<typename Point, typename Result>
484 void evaluateJacobian (const Point& x, Result& r) const
485 {
486 std::fill(r.begin(),r.end(),0.0);
487
488 for (int j=0; j<n; ++j)
489 {
490 const FieldType monomial_value = MonomialEvaluate<FieldType,d-1>::compute(x,*alpha[j]);
491 for (int i=j; i<n; ++i)
492 for (int s=0; s<d; ++s)
493 r[i][0][s] += (*gradcoeffs[s])[i][j]*monomial_value;
494 }
495 }
496
497 // evaluate all basis polynomials at given point up to order l <= k
498 template<typename Point, typename Result>
499 void evaluateFunction (int l, const Point& x, Result& r) const
500 {
501 if (l>k)
502 DUNE_THROW(Dune::RangeError,"l>k in OrthonormalPolynomialBasis::evaluateFunction");
503
504 for (int i=0; i<Traits::size(l,d); i++)
505 {
506 FieldType sum(0.0);
507 for (int j=0; j<=i; j++)
508 sum = sum + (*coeffs)[i][j]*MonomialEvaluate<FieldType,d-1>::compute(x,*alpha[j]);
509 r[i] = sum;
510 }
511 }
512
513 // evaluate all basis polynomials at given point
514 template<typename Point, typename Result>
515 void evaluateJacobian (int l, const Point& x, Result& r) const
516 {
517 if (l>k)
518 DUNE_THROW(Dune::RangeError,"l>k in OrthonormalPolynomialBasis::evaluateFunction");
519
520 for (int i=0; i<Traits::size(l,d); i++)
521 {
522 FieldType sum[d];
523 for (int s=0; s<d; s++)
524 {
525 sum[s] = 0.0;
526 for (int j=0; j<=i; j++)
527 sum[s] += (*gradcoeffs[s])[i][j]*MonomialEvaluate<FieldType,d-1>::compute(x,*alpha[j]);
528 }
529 for (int s=0; s<d; s++) r[i][0][s] = sum[s];
530 }
531 }
532
533 private:
534 // store multiindices and coefficients on heap
535 std::array<std::shared_ptr<MultiIndex<d> >,n> alpha; // store index to multiindex map
536 std::shared_ptr<LowprecMat> coeffs; // coefficients with respect to monomials
537 std::array<std::shared_ptr<LowprecMat>,d > gradcoeffs; // coefficients of gradient
538
539 // compute orthonormalized shapefunctions from a given set of coefficients
540 void orthonormalize()
541 {
542 // run Gram-Schmidt orthogonalization procedure in high precission
543 gram_schmidt();
544
545 // std::cout << "orthogonal basis monomial representation" << std::endl;
546 // for (int i=0; i<n; i++)
547 // {
548 // std::cout << "phi_" << i << ":" ;
549 // for (int j=0; j<=i; j++)
550 // std::cout << " (" << alpha[j] << "," << coeffs[i][j] << ")";
551 // std::cout << std::endl;
552 // }
553
554 // compute coefficients of gradient
555 for (int s=0; s<d; s++)
556 for (int i=0; i<n; i++)
557 for (int j=0; j<=i; j++)
558 (*gradcoeffs[s])[i][j] = 0;
559 for (int i=0; i<n; i++)
560 for (int j=0; j<=i; j++)
561 for (int s=0; s<d; s++)
562 if ((*alpha[j])[s]>0)
563 {
564 MultiIndex<d> beta = *alpha[j]; // get exponents
565 FieldType factor = beta[s];
566 beta[s] -= 1;
567 int l = invert_index(beta);
568 (*gradcoeffs[s])[i][l] += (*coeffs)[i][j]*factor;
569 }
570
571 // for (int s=0; s<d; s++)
572 // {
573 // std::cout << "derivative in direction " << s << std::endl;
574 // for (int i=0; i<n; i++)
575 // {
576 // std::cout << "phi_" << i << ":" ;
577 // for (int j=0; j<=i; j++)
578 // std::cout << " (" << alpha[j] << "," << gradcoeffs[s][i][j] << ")";
579 // std::cout << std::endl;
580 // }
581 // }
582 }
583
584 // get index from a given multiindex
585 int invert_index (MultiIndex<d>& a)
586 {
587 for (int i=0; i<n; i++)
588 {
589 bool found(true);
590 for (int j=0; j<d; j++)
591 if (a[j]!=(*alpha[i])[j]) found=false;
592 if (found) return i;
593 }
594 DUNE_THROW(Dune::RangeError,"index not found in invertindex");
595 }
596
597 void gram_schmidt ()
598 {
599 // allocate a high precission matrix on the heap
600 HighprecMat *p = new HighprecMat();
601 HighprecMat& c = *p;
602
603 // fill identity matrix
604 for (int i=0; i<n; i++)
605 for (int j=0; j<n; j++)
606 if (i==j)
607 c[i][j] = ComputationFieldType(1.0);
608 else
609 c[i][j] = ComputationFieldType(0.0);
610
611 // the Gram-Schmidt loop
613 for (int i=0; i<n; i++)
614 {
615 // store orthogonalization coefficients for scaling
616 ComputationFieldType bi[n];
617
618 // make p_i orthogonal to previous polynomials p_j
619 for (int j=0; j<i; j++)
620 {
621 // p_j is represented with monomials
622 bi[j] = ComputationFieldType(0.0);
623 for (int l=0; l<=j; l++)
624 {
625 MultiIndex<d> a;
626 for (int m=0; m<d; m++) a[m] = (*alpha[i])[m] + (*alpha[l])[m];
627 bi[j] = bi[j] + c[j][l]*integrator.integrate(a);
628 }
629 for (int l=0; l<=j; l++)
630 c[i][l] = c[i][l] - bi[j]*c[j][l];
631 }
632
633 // scale ith polynomial
634 ComputationFieldType s2(0.0);
635 MultiIndex<d> a;
636 for (int m=0; m<d; m++) a[m] = (*alpha[i])[m] + (*alpha[i])[m];
637 s2 = s2 + integrator.integrate(a);
638 for (int j=0; j<i; j++)
639 s2 = s2 - bi[j]*bi[j];
640 ComputationFieldType s(1.0);
641 using std::sqrt;
642 s = s/sqrt(s2);
643 for (int l=0; l<=i; l++)
644 c[i][l] = s*c[i][l];
645 }
646
647 // store coefficients in low precission type
648 for (int i=0; i<n; i++)
649 for (int j=0; j<n; j++)
650 (*coeffs)[i][j] = c[i][j];
651
652 delete p;
653
654 //std::cout << coeffs << std::endl;
655 }
656 };
657
658 } // PB namespace
659
660 // define the local finite element here
661
662 template<class D, class R, int k, int d, Dune::GeometryType::BasicType bt, typename ComputationFieldType=Dune::PB::DefaultComputationalFieldType, PB::BasisType basisType = PB::BasisType::Pk>
663 class OPBLocalBasis
664 {
665 typedef PB::BasisTraits<basisType> BasisTraits;
667 PolynomialBasis opb;
669
670 public:
672 enum{ n = BasisTraits::template Size<k,d>::value };
673
675
676 OPBLocalBasis (int order_) : opb(), gt(bt,d) {}
677
678 template<class LFE>
679 OPBLocalBasis (int order_, const LFE & lfe) : opb(lfe), gt(bt,d) {}
680
682
683 unsigned int size () const { return n; }
684
686 inline void evaluateFunction (const typename Traits::DomainType& in,
687 std::vector<typename Traits::RangeType>& out) const {
688 out.resize(n);
689 opb.evaluateFunction(in,out);
690 }
691
693 inline void
694 evaluateJacobian (const typename Traits::DomainType& in,
695 std::vector<typename Traits::JacobianType>& out) const {
696 out.resize(n);
697 opb.evaluateJacobian(in,out);
698 }
699
701 void partial(const std::array<unsigned int, Traits::dimDomain>& order,
702 const typename Traits::DomainType& in,
703 std::vector<typename Traits::RangeType>& out) const {
704 auto totalOrder = std::accumulate(order.begin(), order.end(), 0);
705 if (totalOrder == 0) {
706 evaluateFunction(in, out);
707 } else {
708 DUNE_THROW(NotImplemented, "Desired derivative order is not implemented");
709 }
710 }
711
713 unsigned int order () const {
714 return BasisTraits::template Order<k,d>::value;
715 }
716
717 Dune::GeometryType type () const { return gt; }
718 };
719
720 template<int k, int d, PB::BasisType basisType = PB::BasisType::Pk>
721 class OPBLocalCoefficients
722 {
723 enum{ n = PB::BasisTraits<basisType>::template Size<k,d>::value };
724 public:
725 OPBLocalCoefficients (int order_) : li(n) {
726 for (int i=0; i<n; i++) li[i] = Dune::LocalKey(0,0,i);
727 }
728
730 std::size_t size () const { return n; }
731
733 const Dune::LocalKey& localKey (int i) const {
734 return li[i];
735 }
736
737 private:
738 std::vector<Dune::LocalKey> li;
739 };
740
741 template<class LB>
742 class OPBLocalInterpolation
743 {
744 const LB& lb;
745
746 public:
747 OPBLocalInterpolation (const LB& lb_, int order_) : lb(lb_) {}
748
750 template<typename F, typename C>
751 void interpolate (const F& f, std::vector<C>& out) const
752 {
753 // select quadrature rule
754 typedef typename FieldTraits<typename LB::Traits::RangeFieldType>::real_type RealFieldType;
755
756 typedef typename LB::Traits::RangeType RangeType;
757 const int d = LB::Traits::dimDomain;
759 rule = Dune::QuadratureRules<RealFieldType,d>::rule(lb.type(),2*lb.order());
760
761 // prepare result
762 out.resize(LB::n);
763 for (int i=0; i<LB::n; i++) out[i] = 0.0;
764
765 // loop over quadrature points
767 it=rule.begin(); it!=rule.end(); ++it)
768 {
769 // evaluate function at quadrature point
770 typename LB::Traits::DomainType x;
771 RangeType y;
772 for (int i=0; i<d; i++) x[i] = it->position()[i];
773 y = f(x);
774
775 // evaluate the basis
776 std::vector<RangeType> phi(LB::n);
777 lb.evaluateFunction(it->position(),phi);
778
779 // do integration
780 for (int i=0; i<LB::n; i++)
781 out[i] += y*phi[i]*it->weight();
782 }
783 }
784 };
785
786 template<class D, class R, int k, int d, Dune::GeometryType::BasicType bt, typename ComputationFieldType=Dune::PB::DefaultComputationalFieldType, PB::BasisType basisType = PB::BasisType::Pk>
787 class OPBLocalFiniteElement
788 {
790 OPBLocalBasis<D,R,k,d,bt,ComputationFieldType,basisType> basis;
791 OPBLocalCoefficients<k,d,basisType> coefficients;
792 OPBLocalInterpolation<OPBLocalBasis<D,R,k,d,bt,ComputationFieldType,basisType> > interpolation;
793 public:
795 OPBLocalCoefficients<k,d,basisType>,
796 OPBLocalInterpolation<OPBLocalBasis<D,R,k,d,bt,ComputationFieldType,basisType> > > Traits;
797
799
800 OPBLocalFiniteElement ()
801 : gt(bt,d), basis(k), coefficients(k), interpolation(basis,k)
802 {}
803
804 template<class LFE>
805 explicit OPBLocalFiniteElement (const LFE & lfe)
806 : gt(bt,d), basis(k, lfe), coefficients(k), interpolation(basis,k)
807 {}
808
810
811 OPBLocalFiniteElement (const OPBLocalFiniteElement & other)
812 : gt(other.gt), basis(other.basis), coefficients(other.coefficients), interpolation(basis,k)
813 {}
814
815 const typename Traits::LocalBasisType& localBasis () const
816 {
817 return basis;
818 }
819
820 const typename Traits::LocalCoefficientsType& localCoefficients () const
821 {
822 return coefficients;
823 }
824
825 const typename Traits::LocalInterpolationType& localInterpolation () const
826 {
827 return interpolation;
828 }
829
832 std::size_t size() const
833 {
834 return basis.size();
835 }
836
837 Dune::GeometryType type () const { return gt; }
838
839 OPBLocalFiniteElement* clone () const {
840 return new OPBLocalFiniteElement(*this);
841 }
842 };
843
844}
845
848#endif // DUNE_PDELAB_FINITEELEMENT_L2ORTHONORMAL_HH
A dense n x m matrix.
Definition: fmatrix.hh:117
vector space out of a tensor product of fields.
Definition: fvector.hh:92
Unique label for each type of entities that can occur in DUNE grids.
Definition: type.hh:114
@ cube
Cube element in any nonnegative dimension.
Definition: type.hh:122
@ simplex
Simplicial element in any nonnegative dimension.
Definition: type.hh:121
Describe position of one degree of freedom.
Definition: localkey.hh:24
Default exception for dummy implementations.
Definition: exceptions.hh:355
ComputationFieldType integrate(const MultiIndex< d > &a) const
integrate one monomial
Definition: l2orthonormal.hh:277
ComputationFieldType integrate(const MultiIndex< 1 > &a) const
integrate one monomial
Definition: l2orthonormal.hh:296
ComputationFieldType integrate(const MultiIndex< 2 > &a) const
integrate one monomial
Definition: l2orthonormal.hh:311
ComputationFieldType integrate(const MultiIndex< 3 > &a) const
integrate one monomial
Definition: l2orthonormal.hh:334
Integrate monomials over the reference element.
Definition: l2orthonormal.hh:261
ComputationFieldType integrate(const MultiIndex< d > &a) const
integrate one monomial
Definition: l2orthonormal.hh:264
Integrate monomials over the reference element.
Definition: l2orthonormal.hh:421
Definition: polynomialbasis.hh:63
void evaluateFunction(const typename Traits::DomainType &x, std::vector< typename Traits::RangeType > &out) const
Evaluate all shape functions.
Definition: polynomialbasis.hh:117
void evaluateJacobian(const typename Traits::DomainType &x, std::vector< typename Traits::JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: polynomialbasis.hh:125
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:214
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:326
Default exception class for range errors.
Definition: exceptions.hh:346
A few common exception classes.
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
Wrapper for the GNU multiprecision (GMP) library.
#define DUNE_NO_DEPRECATED_END
Ignore deprecation warnings (end)
Definition: deprecated.hh:38
#define DUNE_NO_DEPRECATED_BEGIN
Ignore deprecation warnings (start)
Definition: deprecated.hh:32
#define DUNE_THROW(E,...)
Definition: exceptions.hh:312
bool gt(const T &first, const T &second, typename EpsilonType< T >::Type epsilon)
test if first greater than second
Definition: float_cmp.cc:158
void interpolate(const F &f, const GFS &gfs, XG &xg)
interpolation from a given grid function
Definition: interpolate.hh:177
constexpr T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:280
Dune namespace.
Definition: alignedallocator.hh:13
constexpr std::integral_constant< std::size_t, sizeof...(II)> size(std::integer_sequence< T, II... >)
Return the size of the sequence.
Definition: integersequence.hh:75
static constexpr T binomial(const T &n, const T &k) noexcept
calculate the binomial coefficient n over k as a constexpr
Definition: math.hh:131
constexpr int sign(const T &val)
Return the sign of the value.
Definition: math.hh:180
STL namespace.
Type traits for LocalBasisVirtualInterface.
Definition: localbasis.hh:35
D DomainType
domain type
Definition: localbasis.hh:43
traits helper struct
Definition: localfiniteelementtraits.hh:13
LB LocalBasisType
Definition: localfiniteelementtraits.hh:16
LC LocalCoefficientsType
Definition: localfiniteelementtraits.hh:20
LI LocalInterpolationType
Definition: localfiniteelementtraits.hh:24
compute
Definition: l2orthonormal.hh:366
A unique label for each type of element that can occur in a grid.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden & Uni Heidelberg  |  generated with Hugo v0.111.3 (Apr 2, 23:03, 2025)