DUNE PDELab (unstable)
•All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages Concepts
l2orthonormal.hh File Reference
This file defines polynomial basis functions on the reference element in a generic way. More...
#include <array>
#include <iostream>
#include <algorithm>
#include <memory>
#include <numeric>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/gmpfield.hh>
#include <dune/common/exceptions.hh>
#include <dune/geometry/referenceelements.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/geometry/type.hh>
#include <dune/localfunctions/common/localbasis.hh>
#include <dune/localfunctions/common/localkey.hh>
#include <dune/localfunctions/common/localfiniteelementtraits.hh>
Go to the source code of this file.
Classes | |
class | Dune::PB::MonomialIntegrator< ComputationFieldType, bt, d > |
Integrate monomials over the reference element. More... | |
class | Dune::PB::MonomialIntegrator< ComputationFieldType, Dune::GeometryType::cube, d > |
Integrate monomials over the cube in any d. More... | |
class | Dune::PB::MonomialIntegrator< ComputationFieldType, Dune::GeometryType::simplex, 1 > |
Integrate monomials over the unit interval considered as a simplex. More... | |
class | Dune::PB::MonomialIntegrator< ComputationFieldType, Dune::GeometryType::simplex, 2 > |
Integrate monomials over the triangle. More... | |
class | Dune::PB::MonomialIntegrator< ComputationFieldType, Dune::GeometryType::simplex, 3 > |
Integrate monomials over the tetrahedron. More... | |
struct | Dune::PB::MonomialEvaluate< F, d > |
compute \prod_{i=0}^{d-1} x_i^{a_i} More... | |
class | Dune::PB::OrthonormalPolynomialBasis< FieldType, k, d, bt, ComputationFieldType, basisType > |
Integrate monomials over the reference element. More... | |
Namespaces | |
namespace | Dune |
Dune namespace. | |
Functions | |
long | Dune::PB::binomial (long n, long k) |
compute binomial coefficient "n over k" | |
Detailed Description
This file defines polynomial basis functions on the reference element in a generic way.
