DUNE PDELab (git)

fmatrix.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_FMATRIX_HH
6#define DUNE_FMATRIX_HH
7
8#include <cmath>
9#include <cstddef>
10#include <iostream>
11#include <algorithm>
12#include <initializer_list>
13
21#include <dune/common/matrixconcepts.hh>
22
23namespace Dune
24{
25
26 namespace Impl
27 {
28
29 template<class M>
30 class ColumnVectorView
31 {
32 public:
33
34 using value_type = typename M::value_type;
35 using size_type = typename M::size_type;
36
37 constexpr ColumnVectorView(M& matrix, size_type col) :
38 matrix_(matrix),
39 col_(col)
40 {}
41
42 constexpr size_type N () const {
43 return matrix_.N();
44 }
45
46 template<class M_ = M,
47 std::enable_if_t<std::is_same_v<M_,M> and not std::is_const_v<M_>, int> = 0>
48 constexpr value_type& operator[] (size_type row) {
49 return matrix_[row][col_];
50 }
51
52 constexpr const value_type& operator[] (size_type row) const {
53 return matrix_[row][col_];
54 }
55
56 protected:
57 M& matrix_;
58 const size_type col_;
59 };
60
61 }
62
63 template<typename M>
64 struct FieldTraits< Impl::ColumnVectorView<M> >
65 {
66 using field_type = typename FieldTraits<M>::field_type;
67 using real_type = typename FieldTraits<M>::real_type;
68 };
69
81 template< class K, int ROWS, int COLS = ROWS > class FieldMatrix;
82
83
84 template< class K, int ROWS, int COLS >
85 struct DenseMatVecTraits< FieldMatrix<K,ROWS,COLS> >
86 {
87 typedef FieldMatrix<K,ROWS,COLS> derived_type;
88
89 // each row is implemented by a field vector
90 typedef FieldVector<K,COLS> row_type;
91
92 typedef row_type &row_reference;
93 typedef const row_type &const_row_reference;
94
95 typedef std::array<row_type,ROWS> container_type;
96 typedef K value_type;
97 typedef typename container_type::size_type size_type;
98 };
99
100 template< class K, int ROWS, int COLS >
101 struct FieldTraits< FieldMatrix<K,ROWS,COLS> >
102 {
103 typedef typename FieldTraits<K>::field_type field_type;
104 typedef typename FieldTraits<K>::real_type real_type;
105 };
106
115 template<class K, int ROWS, int COLS>
116 class FieldMatrix : public DenseMatrix< FieldMatrix<K,ROWS,COLS> >
117 {
118 std::array< FieldVector<K,COLS>, ROWS > _data;
120 public:
121
123 constexpr static int rows = ROWS;
125 constexpr static int cols = COLS;
126
127 typedef typename Base::size_type size_type;
128 typedef typename Base::row_type row_type;
129
130 typedef typename Base::row_reference row_reference;
132
133 //===== constructors
136 constexpr FieldMatrix() = default;
137
140 constexpr FieldMatrix(std::initializer_list<Dune::FieldVector<K, cols> > const &l) {
141 assert(l.size() == rows); // Actually, this is not needed any more!
142 for(std::size_t i=0; i<std::min<std::size_t>(ROWS, l.size()); ++i)
143 _data[i] = std::data(l)[i];
144 }
145
147 FieldMatrix(const FieldMatrix&) = default;
148
150 template <class T,
151 typename = std::enable_if_t<HasDenseMatrixAssigner<FieldMatrix, T>::value>>
152 FieldMatrix(T const& rhs)
153 {
154 *this = rhs;
155 }
156
157 using Base::operator=;
158
161
163 template<typename T>
165 {
166 _data = x._data;
167 return *this;
168 }
169
171 template <typename T, int rows, int cols>
173
176 {
178 for( int i = 0; i < ROWS; ++i )
179 for( int j = 0; j < COLS; ++j )
180 AT[j][i] = (*this)[i][j];
181 return AT;
182 }
183
185 template <class OtherScalar>
186 friend auto operator+ ( const FieldMatrix& matrixA,
188 {
190
191 for (size_type i = 0; i < ROWS; ++i)
192 for (size_type j = 0; j < COLS; ++j)
193 result[i][j] = matrixA[i][j] + matrixB[i][j];
194
195 return result;
196 }
197
199 template <class OtherScalar>
200 friend auto operator- ( const FieldMatrix& matrixA,
202 {
204
205 for (size_type i = 0; i < ROWS; ++i)
206 for (size_type j = 0; j < COLS; ++j)
207 result[i][j] = matrixA[i][j] - matrixB[i][j];
208
209 return result;
210 }
211
213 template <class Scalar,
214 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
215 friend auto operator* ( const FieldMatrix& matrix, Scalar scalar)
216 {
218
219 for (size_type i = 0; i < ROWS; ++i)
220 for (size_type j = 0; j < COLS; ++j)
221 result[i][j] = matrix[i][j] * scalar;
222
223 return result;
224 }
225
227 template <class Scalar,
228 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
229 friend auto operator* ( Scalar scalar, const FieldMatrix& matrix)
230 {
232
233 for (size_type i = 0; i < ROWS; ++i)
234 for (size_type j = 0; j < COLS; ++j)
235 result[i][j] = scalar * matrix[i][j];
236
237 return result;
238 }
239
241 template <class Scalar,
242 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
243 friend auto operator/ ( const FieldMatrix& matrix, Scalar scalar)
244 {
246
247 for (size_type i = 0; i < ROWS; ++i)
248 for (size_type j = 0; j < COLS; ++j)
249 result[i][j] = matrix[i][j] / scalar;
250
251 return result;
252 }
253
256 template <class OtherScalar, int otherCols>
257 friend auto operator* ( const FieldMatrix& matrixA,
259 {
261
262 for (size_type i = 0; i < matrixA.mat_rows(); ++i)
263 for (size_type j = 0; j < matrixB.mat_cols(); ++j)
264 {
265 result[i][j] = 0;
266 for (size_type k = 0; k < matrixA.mat_cols(); ++k)
267 result[i][j] += matrixA[i][k] * matrixB[k][j];
268 }
269
270 return result;
271 }
272
279 template <class OtherMatrix, std::enable_if_t<
280 Impl::IsStaticSizeMatrix_v<OtherMatrix>
281 and not Impl::IsFieldMatrix_v<OtherMatrix>
282 , int> = 0>
283 friend auto operator* ( const FieldMatrix& matrixA,
284 const OtherMatrix& matrixB)
285 {
286 using Field = typename PromotionTraits<K, typename OtherMatrix::field_type>::PromotedType;
288 for (std::size_t j=0; j<rows; ++j)
289 matrixB.mtv(matrixA[j], result[j]);
290 return result;
291 }
292
299 template <class OtherMatrix, std::enable_if_t<
300 Impl::IsStaticSizeMatrix_v<OtherMatrix>
301 and not Impl::IsFieldMatrix_v<OtherMatrix>
302 , int> = 0>
303 friend auto operator* ( const OtherMatrix& matrixA,
304 const FieldMatrix& matrixB)
305 {
306 using Field = typename PromotionTraits<K, typename OtherMatrix::field_type>::PromotedType;
308 for (std::size_t j=0; j<cols; ++j)
309 {
310 auto B_j = Impl::ColumnVectorView(matrixB, j);
311 auto result_j = Impl::ColumnVectorView(result, j);
312 matrixA.mv(B_j, result_j);
313 }
314 return result;
315 }
316
318 template<int l>
320 {
322
323 for (size_type i=0; i<l; i++) {
324 for (size_type j=0; j<cols; j++) {
325 C[i][j] = 0;
326 for (size_type k=0; k<rows; k++)
327 C[i][j] += M[i][k]*(*this)[k][j];
328 }
329 }
330 return C;
331 }
332
334
336 template <int r, int c>
338 {
339 static_assert(r == c, "Cannot rightmultiply with non-square matrix");
340 static_assert(r == cols, "Size mismatch");
342
343 for (size_type i=0; i<rows; i++)
344 for (size_type j=0; j<cols; j++) {
345 (*this)[i][j] = 0;
346 for (size_type k=0; k<cols; k++)
347 (*this)[i][j] += C[i][k]*M[k][j];
348 }
349 return *this;
350 }
351
353 template<int l>
355 {
357
358 for (size_type i=0; i<rows; i++) {
359 for (size_type j=0; j<l; j++) {
360 C[i][j] = 0;
361 for (size_type k=0; k<cols; k++)
362 C[i][j] += (*this)[i][k]*M[k][j];
363 }
364 }
365 return C;
366 }
367
368 // make this thing a matrix
369 static constexpr size_type mat_rows() { return ROWS; }
370 static constexpr size_type mat_cols() { return COLS; }
371
372 row_reference mat_access ( size_type i )
373 {
374 DUNE_ASSERT_BOUNDS(i < ROWS);
375 return _data[i];
376 }
377
378 const_row_reference mat_access ( size_type i ) const
379 {
380 DUNE_ASSERT_BOUNDS(i < ROWS);
381 return _data[i];
382 }
383 };
384
385#ifndef DOXYGEN // hide specialization
388 template<class K>
389 class FieldMatrix<K,1,1> : public DenseMatrix< FieldMatrix<K,1,1> >
390 {
391 FieldVector<K,1> _data;
392 typedef DenseMatrix< FieldMatrix<K,1,1> > Base;
393 public:
394 // standard constructor and everything is sufficient ...
395
396 //===== type definitions and constants
397
399 typedef typename Base::size_type size_type;
400
403 constexpr static int blocklevel = 1;
404
405 typedef typename Base::row_type row_type;
406
407 typedef typename Base::row_reference row_reference;
408 typedef typename Base::const_row_reference const_row_reference;
409
412 constexpr static int rows = 1;
415 constexpr static int cols = 1;
416
417 //===== constructors
420 constexpr FieldMatrix() = default;
421
424 FieldMatrix(std::initializer_list<Dune::FieldVector<K, 1>> const &l)
425 {
426 std::copy_n(l.begin(), std::min<std::size_t>(1, l.size()), &_data);
427 }
428
429 template <class T,
430 typename = std::enable_if_t<HasDenseMatrixAssigner<FieldMatrix, T>::value>>
431 FieldMatrix(T const& rhs)
432 {
433 *this = rhs;
434 }
435
436 using Base::operator=;
437
439 FieldMatrix<K, 1, 1> transposed() const
440 {
441 return *this;
442 }
443
445 template <class OtherScalar>
446 friend auto operator+ ( const FieldMatrix& matrixA,
447 const FieldMatrix<OtherScalar,1,1>& matrixB)
448 {
449 return FieldMatrix<typename PromotionTraits<K,OtherScalar>::PromotedType,1,1>{matrixA[0][0] + matrixB[0][0]};
450 }
451
453 template <class Scalar,
454 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
455 friend auto operator+ ( const FieldMatrix& matrix,
456 const Scalar& scalar)
457 {
458 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1>{matrix[0][0] + scalar};
459 }
460
462 template <class Scalar,
463 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
464 friend auto operator+ ( const Scalar& scalar,
465 const FieldMatrix& matrix)
466 {
467 return FieldMatrix<typename PromotionTraits<Scalar,K>::PromotedType,1,1>{scalar + matrix[0][0]};
468 }
469
471 template <class OtherScalar>
472 friend auto operator- ( const FieldMatrix& matrixA,
473 const FieldMatrix<OtherScalar,1,1>& matrixB)
474 {
475 return FieldMatrix<typename PromotionTraits<K,OtherScalar>::PromotedType,1,1>{matrixA[0][0] - matrixB[0][0]};
476 }
477
479 template <class Scalar,
480 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
481 friend auto operator- ( const FieldMatrix& matrix,
482 const Scalar& scalar)
483 {
484 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1>{matrix[0][0] - scalar};
485 }
486
488 template <class Scalar,
489 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
490 friend auto operator- ( const Scalar& scalar,
491 const FieldMatrix& matrix)
492 {
493 return FieldMatrix<typename PromotionTraits<Scalar,K>::PromotedType,1,1>{scalar - matrix[0][0]};
494 }
495
497 template <class Scalar,
498 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
499 friend auto operator* ( const FieldMatrix& matrix, Scalar scalar)
500 {
501 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1> {matrix[0][0] * scalar};
502 }
503
505 template <class Scalar,
506 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
507 friend auto operator* ( Scalar scalar, const FieldMatrix& matrix)
508 {
509 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1> {scalar * matrix[0][0]};
510 }
511
513 template <class Scalar,
514 std::enable_if_t<IsNumber<Scalar>::value, int> = 0>
515 friend auto operator/ ( const FieldMatrix& matrix, Scalar scalar)
516 {
517 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1> {matrix[0][0] / scalar};
518 }
519
520 //===== solve
521
524 template <class OtherScalar, int otherCols>
525 friend auto operator* ( const FieldMatrix& matrixA,
526 const FieldMatrix<OtherScalar, 1, otherCols>& matrixB)
527 {
528 FieldMatrix<typename PromotionTraits<K,OtherScalar>::PromotedType,1,otherCols> result;
529
530 for (size_type j = 0; j < matrixB.mat_cols(); ++j)
531 result[0][j] = matrixA[0][0] * matrixB[0][j];
532
533 return result;
534 }
535
542 template <class OtherMatrix, std::enable_if_t<
543 Impl::IsStaticSizeMatrix_v<OtherMatrix>
544 and not Impl::IsFieldMatrix_v<OtherMatrix>
545 and (OtherMatrix::rows==1)
546 , int> = 0>
547 friend auto operator* ( const FieldMatrix& matrixA,
548 const OtherMatrix& matrixB)
549 {
550 using Field = typename PromotionTraits<K, typename OtherMatrix::field_type>::PromotedType;
552 for (std::size_t j=0; j<rows; ++j)
553 matrixB.mtv(matrixA[j], result[j]);
554 return result;
555 }
556
563 template <class OtherMatrix, std::enable_if_t<
564 Impl::IsStaticSizeMatrix_v<OtherMatrix>
565 and not Impl::IsFieldMatrix_v<OtherMatrix>
566 and (OtherMatrix::cols==1)
567 , int> = 0>
568 friend auto operator* ( const OtherMatrix& matrixA,
569 const FieldMatrix& matrixB)
570 {
571 using Field = typename PromotionTraits<K, typename OtherMatrix::field_type>::PromotedType;
573 for (std::size_t j=0; j<cols; ++j)
574 {
575 auto B_j = Impl::ColumnVectorView(matrixB, j);
576 auto result_j = Impl::ColumnVectorView(result, j);
577 matrixA.mv(B_j, result_j);
578 }
579 return result;
580 }
581
583 template<int l>
584 FieldMatrix<K,l,1> leftmultiplyany (const FieldMatrix<K,l,1>& M) const
585 {
586 FieldMatrix<K,l,1> C;
587 for (size_type j=0; j<l; j++)
588 C[j][0] = M[j][0]*(*this)[0][0];
589 return C;
590 }
591
594 {
595 _data[0] *= M[0][0];
596 return *this;
597 }
598
600 template<int l>
601 FieldMatrix<K,1,l> rightmultiplyany (const FieldMatrix<K,1,l>& M) const
602 {
603 FieldMatrix<K,1,l> C;
604
605 for (size_type j=0; j<l; j++)
606 C[0][j] = M[0][j]*_data[0];
607 return C;
608 }
609
610 // make this thing a matrix
611 static constexpr size_type mat_rows() { return 1; }
612 static constexpr size_type mat_cols() { return 1; }
613
614 row_reference mat_access ([[maybe_unused]] size_type i)
615 {
616 DUNE_ASSERT_BOUNDS(i == 0);
617 return _data;
618 }
619
620 const_row_reference mat_access ([[maybe_unused]] size_type i) const
621 {
622 DUNE_ASSERT_BOUNDS(i == 0);
623 return _data;
624 }
625
627 FieldMatrix& operator+= (const K& k)
628 {
629 _data[0] += k;
630 return (*this);
631 }
632
634 FieldMatrix& operator-= (const K& k)
635 {
636 _data[0] -= k;
637 return (*this);
638 }
639
641 FieldMatrix& operator*= (const K& k)
642 {
643 _data[0] *= k;
644 return (*this);
645 }
646
648 FieldMatrix& operator/= (const K& k)
649 {
650 _data[0] /= k;
651 return (*this);
652 }
653
654 //===== conversion operator
655
656 operator const K& () const { return _data[0]; }
657
658 };
659
661 template<typename K>
662 std::ostream& operator<< (std::ostream& s, const FieldMatrix<K,1,1>& a)
663 {
664 s << a[0][0];
665 return s;
666 }
667
668#endif // DOXYGEN
669
670 namespace FMatrixHelp {
671
673 template <typename K>
674 static inline K invertMatrix (const FieldMatrix<K,1,1> &matrix, FieldMatrix<K,1,1> &inverse)
675 {
676 using real_type = typename FieldTraits<K>::real_type;
677 inverse[0][0] = real_type(1.0)/matrix[0][0];
678 return matrix[0][0];
679 }
680
682 template <typename K>
683 static inline K invertMatrix_retTransposed (const FieldMatrix<K,1,1> &matrix, FieldMatrix<K,1,1> &inverse)
684 {
685 return invertMatrix(matrix,inverse);
686 }
687
688
690 template <typename K>
691 static inline K invertMatrix (const FieldMatrix<K,2,2> &matrix, FieldMatrix<K,2,2> &inverse)
692 {
693 using real_type = typename FieldTraits<K>::real_type;
694 // code generated by maple
695 K det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
696 K det_1 = real_type(1.0)/det;
697 inverse[0][0] = matrix[1][1] * det_1;
698 inverse[0][1] = - matrix[0][1] * det_1;
699 inverse[1][0] = - matrix[1][0] * det_1;
700 inverse[1][1] = matrix[0][0] * det_1;
701 return det;
702 }
703
706 template <typename K>
707 static inline K invertMatrix_retTransposed (const FieldMatrix<K,2,2> &matrix, FieldMatrix<K,2,2> &inverse)
708 {
709 using real_type = typename FieldTraits<K>::real_type;
710 // code generated by maple
711 K det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
712 K det_1 = real_type(1.0)/det;
713 inverse[0][0] = matrix[1][1] * det_1;
714 inverse[1][0] = - matrix[0][1] * det_1;
715 inverse[0][1] = - matrix[1][0] * det_1;
716 inverse[1][1] = matrix[0][0] * det_1;
717 return det;
718 }
719
721 template <typename K>
722 static inline K invertMatrix (const FieldMatrix<K,3,3> &matrix, FieldMatrix<K,3,3> &inverse)
723 {
724 using real_type = typename FieldTraits<K>::real_type;
725 // code generated by maple
726 K t4 = matrix[0][0] * matrix[1][1];
727 K t6 = matrix[0][0] * matrix[1][2];
728 K t8 = matrix[0][1] * matrix[1][0];
729 K t10 = matrix[0][2] * matrix[1][0];
730 K t12 = matrix[0][1] * matrix[2][0];
731 K t14 = matrix[0][2] * matrix[2][0];
732
733 K det = (t4*matrix[2][2]-t6*matrix[2][1]-t8*matrix[2][2]+
734 t10*matrix[2][1]+t12*matrix[1][2]-t14*matrix[1][1]);
735 K t17 = real_type(1.0)/det;
736
737 inverse[0][0] = (matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1])*t17;
738 inverse[0][1] = -(matrix[0][1] * matrix[2][2] - matrix[0][2] * matrix[2][1])*t17;
739 inverse[0][2] = (matrix[0][1] * matrix[1][2] - matrix[0][2] * matrix[1][1])*t17;
740 inverse[1][0] = -(matrix[1][0] * matrix[2][2] - matrix[1][2] * matrix[2][0])*t17;
741 inverse[1][1] = (matrix[0][0] * matrix[2][2] - t14) * t17;
742 inverse[1][2] = -(t6-t10) * t17;
743 inverse[2][0] = (matrix[1][0] * matrix[2][1] - matrix[1][1] * matrix[2][0]) * t17;
744 inverse[2][1] = -(matrix[0][0] * matrix[2][1] - t12) * t17;
745 inverse[2][2] = (t4-t8) * t17;
746
747 return det;
748 }
749
751 template <typename K>
752 static inline K invertMatrix_retTransposed (const FieldMatrix<K,3,3> &matrix, FieldMatrix<K,3,3> &inverse)
753 {
754 using real_type = typename FieldTraits<K>::real_type;
755 // code generated by maple
756 K t4 = matrix[0][0] * matrix[1][1];
757 K t6 = matrix[0][0] * matrix[1][2];
758 K t8 = matrix[0][1] * matrix[1][0];
759 K t10 = matrix[0][2] * matrix[1][0];
760 K t12 = matrix[0][1] * matrix[2][0];
761 K t14 = matrix[0][2] * matrix[2][0];
762
763 K det = (t4*matrix[2][2]-t6*matrix[2][1]-t8*matrix[2][2]+
764 t10*matrix[2][1]+t12*matrix[1][2]-t14*matrix[1][1]);
765 K t17 = real_type(1.0)/det;
766
767 inverse[0][0] = (matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1])*t17;
768 inverse[1][0] = -(matrix[0][1] * matrix[2][2] - matrix[0][2] * matrix[2][1])*t17;
769 inverse[2][0] = (matrix[0][1] * matrix[1][2] - matrix[0][2] * matrix[1][1])*t17;
770 inverse[0][1] = -(matrix[1][0] * matrix[2][2] - matrix[1][2] * matrix[2][0])*t17;
771 inverse[1][1] = (matrix[0][0] * matrix[2][2] - t14) * t17;
772 inverse[2][1] = -(t6-t10) * t17;
773 inverse[0][2] = (matrix[1][0] * matrix[2][1] - matrix[1][1] * matrix[2][0]) * t17;
774 inverse[1][2] = -(matrix[0][0] * matrix[2][1] - t12) * t17;
775 inverse[2][2] = (t4-t8) * t17;
776
777 return det;
778 }
779
781 template< class K, int m, int n, int p >
782 static inline void multMatrix ( const FieldMatrix< K, m, n > &A,
783 const FieldMatrix< K, n, p > &B,
785 {
786 typedef typename FieldMatrix< K, m, p > :: size_type size_type;
787
788 for( size_type i = 0; i < m; ++i )
789 {
790 for( size_type j = 0; j < p; ++j )
791 {
792 ret[ i ][ j ] = K( 0 );
793 for( size_type k = 0; k < n; ++k )
794 ret[ i ][ j ] += A[ i ][ k ] * B[ k ][ j ];
795 }
796 }
797 }
798
800 template <typename K, int rows, int cols>
802 {
803 typedef typename FieldMatrix<K,rows,cols>::size_type size_type;
804
805 for(size_type i=0; i<cols; i++)
806 for(size_type j=0; j<cols; j++)
807 {
808 ret[i][j]=0.0;
809 for(size_type k=0; k<rows; k++)
810 ret[i][j]+=matrix[k][i]*matrix[k][j];
811 }
812 }
813
814 using Dune::DenseMatrixHelp::multAssign;
815
817 template <typename K, int rows, int cols>
819 {
820 typedef typename FieldMatrix<K,rows,cols>::size_type size_type;
821
822 for(size_type i=0; i<cols; ++i)
823 {
824 ret[i] = 0.0;
825 for(size_type j=0; j<rows; ++j)
826 ret[i] += matrix[j][i]*x[j];
827 }
828 }
829
831 template <typename K, int rows, int cols>
833 {
835 multAssign(matrix,x,ret);
836 return ret;
837 }
838
840 template <typename K, int rows, int cols>
842 {
844 multAssignTransposed( matrix, x, ret );
845 return ret;
846 }
847
848 } // end namespace FMatrixHelp
849
852} // end namespace
853
854#include "fmatrixev.hh"
855#endif
Macro for wrapping boundary checks.
A dense n x m matrix.
Definition: densematrix.hh:145
derived_type operator-() const
Matrix negation.
Definition: densematrix.hh:303
void mtv(const X &x, Y &y) const
y = A^T x
Definition: densematrix.hh:392
constexpr size_type M() const
number of columns
Definition: densematrix.hh:708
FieldMatrix< K, ROWS, COLS > & rightmultiply(const DenseMatrix< M2 > &M)
Multiplies M from the right to this matrix.
Definition: densematrix.hh:650
derived_type & operator/=(const field_type &k)
vector space division by scalar
Definition: densematrix.hh:334
derived_type & operator*=(const field_type &k)
vector space multiplication with scalar
Definition: densematrix.hh:326
derived_type & operator-=(const DenseMatrix< Other > &x)
vector space subtraction
Definition: densematrix.hh:317
static constexpr int blocklevel
The number of block levels we contain. This is the leaf, that is, 1.
Definition: densematrix.hh:183
Traits::row_type row_type
The type used to represent a row (must fulfill the Dune::DenseVector interface)
Definition: densematrix.hh:174
Traits::size_type size_type
The type used for the index access and size operation.
Definition: densematrix.hh:171
Traits::const_row_reference const_row_reference
The type used to represent a reference to a constant row (usually const row_type &)
Definition: densematrix.hh:180
Traits::row_reference row_reference
The type used to represent a reference to a row (usually row_type &)
Definition: densematrix.hh:177
derived_type & operator+=(const DenseMatrix< Other > &x)
vector space addition
Definition: densematrix.hh:294
A dense n x m matrix.
Definition: fmatrix.hh:117
constexpr FieldMatrix()=default
Default constructor.
FieldMatrix & operator=(const FieldMatrix< T, ROWS, COLS > &x)
copy assignment from FieldMatrix over a different field
Definition: fmatrix.hh:164
FieldMatrix< K, rows, l > rightmultiplyany(const FieldMatrix< K, cols, l > &M) const
Multiplies M from the right to this matrix, this matrix is not modified.
Definition: fmatrix.hh:354
FieldMatrix< K, l, cols > leftmultiplyany(const FieldMatrix< K, l, rows > &M) const
Multiplies M from the left to this matrix, this matrix is not modified.
Definition: fmatrix.hh:319
FieldMatrix & rightmultiply(const FieldMatrix< K, r, c > &M)
Multiplies M from the right to this matrix.
Definition: fmatrix.hh:337
FieldMatrix(T const &rhs)
copy constructor from assignable type T
Definition: fmatrix.hh:152
friend auto operator*(const FieldMatrix &matrix, Scalar scalar)
vector space multiplication with scalar
Definition: fmatrix.hh:215
FieldMatrix & operator=(FieldMatrix< T, rows, cols > const &)=delete
no copy assignment from FieldMatrix of different size
constexpr FieldMatrix(std::initializer_list< Dune::FieldVector< K, cols > > const &l)
Constructor initializing the matrix from a list of vector.
Definition: fmatrix.hh:140
static constexpr int rows
The number of rows.
Definition: fmatrix.hh:123
FieldMatrix< K, COLS, ROWS > transposed() const
Return transposed of the matrix as FieldMatrix.
Definition: fmatrix.hh:175
static constexpr int cols
The number of columns.
Definition: fmatrix.hh:125
friend auto operator/(const FieldMatrix &matrix, Scalar scalar)
vector space division by scalar
Definition: fmatrix.hh:243
friend auto operator+(const FieldMatrix &matrixA, const FieldMatrix< OtherScalar, ROWS, COLS > &matrixB)
vector space addition – two-argument version
Definition: fmatrix.hh:186
FieldMatrix & operator=(const FieldMatrix &)=default
copy assignment operator
FieldMatrix(const FieldMatrix &)=default
copy constructor
Implements a matrix constructed from a given type representing a field and a compile-time given numbe...
A few common exception classes.
Traits for type conversions and type information.
static FieldVector< K, cols > multTransposed(const FieldMatrix< K, rows, cols > &matrix, const FieldVector< K, rows > &x)
calculates ret = matrix^T * x
Definition: fmatrix.hh:841
static K invertMatrix_retTransposed(const FieldMatrix< K, 1, 1 > &matrix, FieldMatrix< K, 1, 1 > &inverse)
invert scalar without changing the original matrix
Definition: fmatrix.hh:683
static void multMatrix(const FieldMatrix< K, m, n > &A, const FieldMatrix< K, n, p > &B, FieldMatrix< K, m, p > &ret)
calculates ret = A * B
Definition: fmatrix.hh:782
static K invertMatrix(const FieldMatrix< K, 1, 1 > &matrix, FieldMatrix< K, 1, 1 > &inverse)
invert scalar without changing the original matrix
Definition: fmatrix.hh:674
static FieldVector< K, rows > mult(const FieldMatrix< K, rows, cols > &matrix, const FieldVector< K, cols > &x)
calculates ret = matrix * x
Definition: fmatrix.hh:832
static void multTransposedMatrix(const FieldMatrix< K, rows, cols > &matrix, FieldMatrix< K, cols, cols > &ret)
calculates ret= A_t*A
Definition: fmatrix.hh:801
static void multAssignTransposed(const FieldMatrix< K, rows, cols > &matrix, const FieldVector< K, rows > &x, FieldVector< K, cols > &ret)
calculates ret = matrix^T * x
Definition: fmatrix.hh:818
Eigenvalue computations for the FieldMatrix class.
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_ASSERT_BOUNDS(cond)
If DUNE_CHECK_BOUNDS is defined: check if condition cond holds; otherwise, do nothing.
Definition: boundschecking.hh:30
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:235
Dune namespace.
Definition: alignedallocator.hh:13
Various precision settings for calculations with FieldMatrix and FieldVector.
Compute type of the result of an arithmetic operation involving two different number types.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Jan 7, 23:29, 2025)