DUNE-FEM (unstable)

legendre.hh
1#ifndef DUNE_FEM_SPACE_SHAPEFUNCTIONSET_LEGENDRE_HH
2#define DUNE_FEM_SPACE_SHAPEFUNCTIONSET_LEGENDRE_HH
3
4#include <cassert>
5#include <cstddef>
6
7#include <algorithm>
8#include <array>
9#include <iterator>
10#include <vector>
11
12#include <dune/fem/common/coordinate.hh>
13#include <dune/fem/space/shapefunctionset/legendrepolynomials.hh>
14
15namespace Dune
16{
17
18 namespace Fem
19 {
20
21 // LegendreShapeFunction
22 // ---------------------
23
30 template< class FunctionSpace >
32 {
33 static_assert( FunctionSpace::dimRange == 1, "FunctionSpace must be scalar (i.e., dimRange = 1)." );
34
35 public:
38
43
52
53 private:
54 static const int dimDomain = FunctionSpaceType::dimDomain;
55
56 public:
61 LegendreShapeFunction () = default;
62
63 template< class MultiIndex >
64 explicit LegendreShapeFunction ( const MultiIndex &multiIndex )
65 {
66 using std::begin;
67 using std::end;
68
69 auto first = begin( multiIndex );
70 auto last = end( multiIndex );
71 assert( std::distance( first, last ) == dimDomain );
72 std::copy( first, last, multiIndex_.begin() );
73 }
74
78 int order () const noexcept
79 {
80 return *std::max_element( multiIndex_.begin(), multiIndex_.end() );
81 }
82
84 const std::array< int, FunctionSpaceType::dimDomain > &orders () const noexcept
85 {
86 return multiIndex_;
87 }
88
90 void evaluate ( const DomainType &x, RangeType &value ) const noexcept
91 {
92 value[ 0 ] = RangeFieldType( 1 );
93 for( int i = 0; i < dimDomain; ++i )
94 value[ 0 ] *= LegendrePolynomials::evaluate( multiIndex_[ i ], x[ i ] );
95 }
96
98 void jacobian ( const DomainType &x, JacobianRangeType &jacobian ) const noexcept
99 {
101 for( int k = 0; k < dimDomain; ++k )
102 {
103 const RangeFieldType phi = LegendrePolynomials::evaluate( multiIndex_[ k ], x[ k ] );
104 const RangeFieldType dphi = LegendrePolynomials::jacobian( multiIndex_[ k ], x[ k ]);
105 for( int i = 0; i < dimDomain; ++i )
106 jacobian[ 0 ][ i ] *= ( k == i ) ? dphi : phi;
107 }
108 }
109
111 void hessian ( const DomainType &x, HessianRangeType &hessian ) const noexcept
112 {
113 hessian = HessianRangeType( typename HessianRangeType::value_type( 1 ) );
114 for( int k = 0; k < dimDomain; ++k )
115 {
116 const RangeFieldType phi = LegendrePolynomials::evaluate( multiIndex_[ k ], x[ k ] );
117 const RangeFieldType dphi = LegendrePolynomials::jacobian( multiIndex_[ k ], x[ k ] );
118 for( int i = 0; i < dimDomain; ++i )
119 {
120 hessian[ 0 ][ i ][ i ] *= ( k == i ) ? LegendrePolynomials::hessian( multiIndex_[ i ], x[ i ]) : phi;
121 for( int j = i+1; j < dimDomain; ++j )
122 {
123 RangeFieldType tmp = ( k == i || k == j ) ? dphi : phi;
124 hessian[ 0 ][ i ][ j ] *= tmp;
125 hessian[ 0 ][ j ][ i ] *= tmp;
126 }
127 }
128 }
129 }
130
131 private:
132 std::array< int, dimDomain > multiIndex_;
133 };
134
135
136
137#ifndef DOXYGEN
138
139 namespace __LegendreShapeFunctionSet
140 {
141
142 // DefaultFactory
143 // --------------
144
145 template< class FunctionSpace >
146 class DefaultFactory
147 {
148 typedef LegendreShapeFunction< FunctionSpace > ShapeFunctionType;
149
150 static const int dimDomain = FunctionSpace::dimDomain;
151 typedef std::array< int, dimDomain > MultiIndex;
152
153 public:
154 explicit DefaultFactory ( int order )
155 : order_( order )
156 {}
157
158 int order () const noexcept { return order_; }
159
160 std::size_t size () const noexcept
161 {
162 std::size_t size = 1;
163 for( int i = 0; i < dimDomain; ++i )
164 size *= order() + 1;
165 return size;
166 }
167
168 template< class InputIterator >
169 void operator() ( InputIterator first ) const noexcept
170 {
171 auto function = [&first]( const MultiIndex &multiIndex )
172 {
173 *first = ShapeFunctionType( multiIndex );
174 ++first;
175 };
176
177 MultiIndex multiIndex;
178 fill( multiIndex, function, &multiIndex[ 0 ], dimDomain, order() );
179 }
180
181 private:
182 template< class Function >
183 static void fill ( MultiIndex &multiIndex, Function function,
184 int *begin, std::size_t n, int order )
185 {
186 if( n > 0u )
187 {
188 for( *begin = 0; *begin <= order; *begin += 1 )
189 fill( multiIndex, function, begin+1, n-1, order );
190 }
191 else
192 function( multiIndex );
193 }
194
195 int order_;
196 };
197
198 } // namespace __LegendreShapeFunctionSet
199
200#endif // #ifndef DOXYGEN
201
202
203
204 // LegendreShapeFunctionSet
205 // ------------------------
206
216 template< class FunctionSpace, bool hierarchicalOrdering = false >
218 {
219 protected:
221
222 public:
225
234
235 protected:
236 struct Compare
237 {
238 bool operator() ( const ShapeFunctionType &lhs, const ShapeFunctionType &rhs ) noexcept
239 {
240 if( lhs.order() != rhs.order() )
241 return lhs.order() < rhs.order();
242 else
243 {
244 const auto &a = lhs.orders();
245 const auto &b = rhs.orders();
246 return std::lexicographical_compare( a.begin(), a.end(), b.begin(), b.end() );
247 }
248 }
249 };
250
251 public:
259
265 : LegendreShapeFunctionSet( __LegendreShapeFunctionSet::DefaultFactory< FunctionSpaceType >( order ) )
266 {}
267
287 template< class Factory >
288 LegendreShapeFunctionSet ( const Factory &factory )
289 : shapeFunctions_( factory.size() ),
290 order_( factory.order() )
291 {
292 factory( shapeFunctions_.begin() );
293
294 // if hierarchical ordering was selected sort shape functions
295 // according to polynomial order
296 if( hierarchicalOrdering )
297 {
298 std::sort( shapeFunctions_.begin(), shapeFunctions_.end(), Compare() );
299 }
300 }
301
305 int order () const noexcept { return order_; }
306
308 std::size_t size () const noexcept { return shapeFunctions_.size(); }
309
311 template< class Point, class Functor >
312 void evaluateEach ( const Point &x, Functor functor ) const noexcept
313 {
314 RangeType value;
315 std::size_t i = 0u;
316 for( const ShapeFunctionType &shapeFunction : shapeFunctions_ )
317 {
318 shapeFunction.evaluate( coordinate( x ), value );
319 functor( i++, value );
320 }
321 }
322
324 template< class Point, class Functor >
325 void jacobianEach ( const Point &x, Functor functor ) const noexcept
326 {
327 JacobianRangeType jacobian;
328 std::size_t i = 0u;
329 for( const ShapeFunctionType &shapeFunction : shapeFunctions_ )
330 {
331 shapeFunction.jacobian( coordinate( x ), jacobian );
332 functor( i++, jacobian );
333 }
334 }
335
337 template< class Point, class Functor >
338 void hessianEach ( const Point &x, Functor functor ) const noexcept
339 {
340 HessianRangeType hessian;
341 std::size_t i = 0u;
342 for( const ShapeFunctionType &shapeFunction : shapeFunctions_ )
343 {
344 shapeFunction.hessian( coordinate( x ), hessian );
345 functor( i++, hessian );
346 }
347 }
348
349 protected:
350 std::vector< ShapeFunctionType > shapeFunctions_;
351 int order_;
352 };
353
354 } // namespace Fem
355
356} // namespace Dune
357
358#endif // #ifndef DUNE_FEM_SPACE_SHAPEFUNCTIONSET_LEGENDRE_HH
Definition: explicitfieldvector.hh:75
FunctionSpaceTraits::DomainFieldType DomainFieldType
Intrinsic type used for values in the domain field (usually a double)
Definition: functionspaceinterface.hh:60
FunctionSpaceTraits::RangeType RangeType
Type of range vector (using type of range field) has a Dune::FieldVector type interface.
Definition: functionspaceinterface.hh:71
@ dimDomain
dimension of domain vector space
Definition: functionspaceinterface.hh:46
@ dimRange
dimension of range vector space
Definition: functionspaceinterface.hh:48
FunctionSpaceTraits::LinearMappingType JacobianRangeType
Intrinsic type used for the jacobian values has a Dune::FieldMatrix type interface.
Definition: functionspaceinterface.hh:75
FunctionSpaceTraits::DomainType DomainType
Type of domain vector (using type of domain field) has a Dune::FieldVector type interface.
Definition: functionspaceinterface.hh:67
FunctionSpaceTraits::RangeFieldType RangeFieldType
Intrinsic type used for values in the range field (usually a double)
Definition: functionspaceinterface.hh:63
A vector valued function space.
Definition: functionspace.hh:60
a Dune::Fem::ShapeFunctionSet of Legendre ansatz polynomials
Definition: legendre.hh:218
FunctionSpaceType::JacobianRangeType JacobianRangeType
jacobian range type
Definition: legendre.hh:231
FunctionSpaceType::DomainType DomainType
domain type
Definition: legendre.hh:227
void hessianEach(const Point &x, Functor functor) const noexcept
evalute hessian of each shape function
Definition: legendre.hh:338
void evaluateEach(const Point &x, Functor functor) const noexcept
evalute each shape function
Definition: legendre.hh:312
FunctionSpaceType::RangeType RangeType
range type
Definition: legendre.hh:229
LegendreShapeFunctionSet()=default
default constructor resulting in uninitialized shape function set
int order() const noexcept
return order of shape functions
Definition: legendre.hh:305
FunctionSpaceType::HessianRangeType HessianRangeType
hessian range type
Definition: legendre.hh:233
void jacobianEach(const Point &x, Functor functor) const noexcept
evalute jacobian of each shape function
Definition: legendre.hh:325
std::size_t size() const noexcept
return number of shape functions
Definition: legendre.hh:308
FunctionSpace FunctionSpaceType
function space type
Definition: legendre.hh:224
LegendreShapeFunctionSet(const Factory &factory)
initialize from user-defined factory object
Definition: legendre.hh:288
LegendreShapeFunctionSet(int order)
initialize with polynomial order
Definition: legendre.hh:264
implementation of a single scalar-valued Legendre shape function
Definition: legendre.hh:32
FunctionSpaceType::HessianRangeType HessianRangeType
hessian type
Definition: legendre.hh:51
void evaluate(const DomainType &x, RangeType &value) const noexcept
evaluate the function
Definition: legendre.hh:90
void jacobian(const DomainType &x, JacobianRangeType &jacobian) const noexcept
evaluate the Jacobian of the function
Definition: legendre.hh:98
void hessian(const DomainType &x, HessianRangeType &hessian) const noexcept
evaluate the hessian of the function
Definition: legendre.hh:111
FunctionSpaceType::RangeFieldType RangeFieldType
field type of range
Definition: legendre.hh:42
FunctionSpace FunctionSpaceType
type of function space this function belongs to
Definition: legendre.hh:37
FunctionSpaceType::JacobianRangeType JacobianRangeType
jacobian type
Definition: legendre.hh:49
int order() const noexcept
return polynomial order of this function
Definition: legendre.hh:78
FunctionSpaceType::DomainType DomainType
domain type
Definition: legendre.hh:45
FunctionSpaceType::RangeType RangeType
range type
Definition: legendre.hh:47
FunctionSpaceType::DomainFieldType DomainFieldType
field type of domain
Definition: legendre.hh:40
const std::array< int, FunctionSpaceType::dimDomain > & orders() const noexcept
return monomial orders of this function
Definition: legendre.hh:84
Dune namespace.
Definition: alignedallocator.hh:13
constexpr std::integral_constant< std::size_t, sizeof...(II)> size(std::integer_sequence< T, II... >)
Return the size of the sequence.
Definition: integersequence.hh:75
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 21, 23:30, 2024)