DUNE PDELab (2.8)

nedelec1stkindsimplex.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_LOCALFUNCTIONS_NEDELEC_NEDELEC1STKINDSIMPLEX_HH
4#define DUNE_LOCALFUNCTIONS_NEDELEC_NEDELEC1STKINDSIMPLEX_HH
5
6#include <numeric>
7
10
11#include <dune/geometry/referenceelements.hh>
12#include <dune/geometry/type.hh>
13
14#include <dune/localfunctions/common/localbasis.hh>
15#include <dune/localfunctions/common/localfiniteelementtraits.hh>
16#include <dune/localfunctions/common/localinterpolation.hh> // For deprecated makeFunctionWithCallOperator
17#include <dune/localfunctions/common/localkey.hh>
18
19namespace Dune
20{
21namespace Impl
22{
33 template<class D, class R, int dim, int k>
34 class Nedelec1stKindSimplexLocalBasis
35 {
36 // Number of edges of the reference simplex
37 constexpr static std::size_t numberOfEdges = dim*(dim+1)/2;
38
39 public:
40 using Traits = LocalBasisTraits<D,dim,FieldVector<D,dim>,
41 R,dim,FieldVector<R,dim>,
42 FieldMatrix<R,dim,dim> >;
43
50 Nedelec1stKindSimplexLocalBasis()
51 {
52 std::fill(edgeOrientation_.begin(), edgeOrientation_.end(), 1.0);
53 }
54
57 Nedelec1stKindSimplexLocalBasis(std::bitset<numberOfEdges> edgeOrientation)
58 : Nedelec1stKindSimplexLocalBasis()
59 {
60 for (std::size_t i=0; i<edgeOrientation_.size(); i++)
61 edgeOrientation_[i] *= edgeOrientation[i] ? -1.0 : 1.0;
62 }
63
65 static constexpr unsigned int size()
66 {
67 static_assert(dim==2 || dim==3, "Nedelec shape functions are implemented only for 2d and 3d simplices.");
68 if (dim==2)
69 return k * (k+2);
70 if (dim==3)
71 return k * (k+2) * (k+3) / 2;
72 }
73
79 void evaluateFunction(const typename Traits::DomainType& in,
80 std::vector<typename Traits::RangeType>& out) const
81 {
82 static_assert(k==1, "Evaluating Nédélec shape functions is implemented only for first order.");
83 out.resize(size());
84
85 if (dim==2)
86 {
87 // First-order Nédélec shape functions on a triangle are of the form
88 //
89 // (a1, a2) + b(-x2, x1)^T, a_1, a_2, b \in R
90 out[0] = {D(1) - in[1], in[0]};
91 out[1] = {in[1], -in[0]+D(1)};
92 out[2] = {-in[1], in[0]};
93 }
94
95 if constexpr (dim==3)
96 {
97 // First-order Nédélec shape functions on a tetrahedron are of the form
98 //
99 // a + b \times x, a, b \in R^3
100 //
101 // The following coefficients create the six basis vectors
102 // that are dual to the edge degrees of freedom:
103 //
104 // a[0] = { 1, 0, 0} b[0] = { 0, -1, 1}
105 // a[1] = { 0, 1, 0} b[1] = { 1, 0, -1}
106 // a[2] = { 0, 0, 0} b[2] = { 0, 0, 1}
107 // a[3] = { 0, 0, 1} b[3] = {-1, 1, 0}
108 // a[4] = { 0, 0, 0} b[4] = { 0, -1, 0}
109 // a[5] = { 0, 0, 0} b[5] = { 1, 0, 0}
110 //
111 // The following implementation uses these values, and simply
112 // skips all the zeros.
113
114 out[0] = { 1 - in[1] - in[2], in[0] , in[0] };
115 out[1] = { in[1] , 1 - in[0] - in[2], in[1]};
116 out[2] = { - in[1] , in[0] , 0 };
117 out[3] = { in[2], in[2], 1 - in[0] - in[1]};
118 out[4] = { -in[2], 0 , in[0] };
119 out[5] = { 0 , -in[2], in[1]};
120 }
121
122 for (std::size_t i=0; i<out.size(); i++)
123 out[i] *= edgeOrientation_[i];
124 }
125
131 void evaluateJacobian(const typename Traits::DomainType& in,
132 std::vector<typename Traits::JacobianType>& out) const
133 {
134 out.resize(size());
135 if (dim==2)
136 {
137 out[0][0] = { 0, -1};
138 out[0][1] = { 1, 0};
139
140 out[1][0] = { 0, 1};
141 out[1][1] = {-1, 0};
142
143 out[2][0] = { 0, -1};
144 out[2][1] = { 1, 0};
145 }
146 if (dim==3)
147 {
148 out[0][0] = { 0,-1,-1};
149 out[0][1] = { 1, 0, 0};
150 out[0][2] = { 1, 0, 0};
151
152 out[1][0] = { 0, 1, 0};
153 out[1][1] = {-1, 0, -1};
154 out[1][2] = { 0, 1, 0};
155
156 out[2][0] = { 0, -1, 0};
157 out[2][1] = { 1, 0, 0};
158 out[2][2] = { 0, 0, 0};
159
160 out[3][0] = { 0, 0, 1};
161 out[3][1] = { 0, 0, 1};
162 out[3][2] = {-1, -1, 0};
163
164 out[4][0] = { 0, 0, -1};
165 out[4][1] = { 0, 0, 0};
166 out[4][2] = { 1, 0, 0};
167
168 out[5][0] = { 0, 0, 0};
169 out[5][1] = { 0, 0, -1};
170 out[5][2] = { 0, 1, 0};
171 }
172
173 for (std::size_t i=0; i<out.size(); i++)
174 out[i] *= edgeOrientation_[i];
175
176 }
177
184 void partial(const std::array<unsigned int, dim>& order,
185 const typename Traits::DomainType& in,
186 std::vector<typename Traits::RangeType>& out) const
187 {
188 auto totalOrder = std::accumulate(order.begin(), order.end(), 0);
189 if (totalOrder == 0) {
190 evaluateFunction(in, out);
191 } else if (totalOrder == 1) {
192 auto const direction = std::distance(order.begin(), std::find(order.begin(), order.end(), 1));
193 out.resize(size());
194
195 if (dim==2)
196 {
197 if (direction==0)
198 {
199 out[0] = {0, 1};
200 out[1] = {0, -1};
201 out[2] = {0, 1};
202 }
203 else
204 {
205 out[0] = {-1, 0};
206 out[1] = { 1, 0};
207 out[2] = {-1, 0};
208 }
209 }
210
211 if (dim==3)
212 {
213 switch (direction)
214 {
215 case 0:
216 out[0] = { 0, 1, 1};
217 out[1] = { 0,-1, 0};
218 out[2] = { 0, 1, 0};
219 out[3] = { 0, 0,-1};
220 out[4] = { 0, 0, 1};
221 out[5] = { 0, 0, 0};
222 break;
223
224 case 1:
225 out[0] = {-1, 0, 0};
226 out[1] = { 1, 0, 1};
227 out[2] = {-1, 0, 0};
228 out[3] = { 0, 0,-1};
229 out[4] = { 0, 0, 0};
230 out[5] = { 0, 0, 1};
231 break;
232
233 case 2:
234 out[0] = {-1, 0, 0};
235 out[1] = { 0,-1, 0};
236 out[2] = { 0, 0, 0};
237 out[3] = { 1, 1, 0};
238 out[4] = {-1, 0, 0};
239 out[5] = { 0,-1, 0};
240 break;
241 }
242 }
243
244 for (std::size_t i=0; i<out.size(); i++)
245 out[i] *= edgeOrientation_[i];
246
247 } else {
248 out.resize(size());
249 for (std::size_t i = 0; i < size(); ++i)
250 for (std::size_t j = 0; j < dim; ++j)
251 out[i][j] = 0;
252 }
253
254 }
255
257 unsigned int order() const
258 {
259 return k;
260 }
261
262 private:
263
264 // Orientations of the simplex edges
265 std::array<R,numberOfEdges> edgeOrientation_;
266 };
267
268
273 template <int dim, int k>
274 class Nedelec1stKindSimplexLocalCoefficients
275 {
276 public:
278 Nedelec1stKindSimplexLocalCoefficients ()
279 : localKey_(size())
280 {
281 static_assert(k==1, "Only first-order Nédélec local coefficients are implemented.");
282 // Assign all degrees of freedom to edges
283 // TODO: This is correct only for first-order Nédélec elements
284 for (std::size_t i=0; i<size(); i++)
285 localKey_[i] = LocalKey(i,dim-1,0);
286 }
287
289 std::size_t size() const
290 {
291 static_assert(dim==2 || dim==3, "Nédélec shape functions are implemented only for 2d and 3d simplices.");
292 return (dim==2) ? k * (k+2)
293 : k * (k+2) * (k+3) / 2;
294 }
295
298 const LocalKey& localKey (std::size_t i) const
299 {
300 return localKey_[i];
301 }
302
303 private:
304 std::vector<LocalKey> localKey_;
305 };
306
311 template<class LB>
312 class Nedelec1stKindSimplexLocalInterpolation
313 {
314 static constexpr auto dim = LB::Traits::dimDomain;
315 static constexpr auto size = LB::size();
316
317 // Number of edges of the reference simplex
318 constexpr static std::size_t numberOfEdges = dim*(dim+1)/2;
319
320 public:
321
323 Nedelec1stKindSimplexLocalInterpolation (std::bitset<numberOfEdges> s = 0)
324 {
325 auto refElement = Dune::referenceElement<double,dim>(GeometryTypes::simplex(dim));
326
327 for (std::size_t i=0; i<numberOfEdges; i++)
328 m_[i] = refElement.position(i,dim-1);
329
330 for (std::size_t i=0; i<numberOfEdges; i++)
331 {
332 auto vertexIterator = refElement.subEntities(i,dim-1,dim).begin();
333 auto v0 = *vertexIterator;
334 auto v1 = *(++vertexIterator);
335 // By default, edges point from the vertex with the smaller index
336 // to the vertex with the larger index.
337 if (v0>v1)
338 std::swap(v0,v1);
339 edge_[i] = refElement.position(v1,dim) - refElement.position(v0,dim);
340 edge_[i] *= (s[i]) ? -1.0 : 1.0;
341 }
342 }
343
349 template<typename F, typename C>
350 void interpolate (const F& ff, std::vector<C>& out) const
351 {
352 out.resize(size);
353 auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
354
355 for (std::size_t i=0; i<size; i++)
356 {
357 auto y = f(m_[i]);
358 out[i] = 0.0;
359 for (int j=0; j<dim; j++)
360 out[i] += y[j]*edge_[i][j];
361 }
362 }
363
364 private:
365 // Edge midpoints of the reference simplex
366 std::array<typename LB::Traits::DomainType, numberOfEdges> m_;
367 // Edges of the reference simplex
368 std::array<typename LB::Traits::DomainType, numberOfEdges> edge_;
369 };
370
371}
372
373
399 template<class D, class R, int dim, int k>
401 {
402 public:
404 Impl::Nedelec1stKindSimplexLocalCoefficients<dim,k>,
405 Impl::Nedelec1stKindSimplexLocalInterpolation<Impl::Nedelec1stKindSimplexLocalBasis<D,R,dim,k> > >;
406
407 static_assert(dim==2 || dim==3, "Nedelec elements are only implemented for 2d and 3d elements.");
408 static_assert(k==1, "Nedelec elements of the first kind are currently only implemented for order k==1.");
409
413
419 Nedelec1stKindSimplexLocalFiniteElement (std::bitset<dim*(dim+1)/2> s) :
420 basis_(s),
421 interpolation_(s)
422 {}
423
424 const typename Traits::LocalBasisType& localBasis () const
425 {
426 return basis_;
427 }
428
429 const typename Traits::LocalCoefficientsType& localCoefficients () const
430 {
431 return coefficients_;
432 }
433
434 const typename Traits::LocalInterpolationType& localInterpolation () const
435 {
436 return interpolation_;
437 }
438
439 static constexpr unsigned int size ()
440 {
441 return Traits::LocalBasisType::size();
442 }
443
444 static constexpr GeometryType type ()
445 {
446 return GeometryTypes::simplex(dim);
447 }
448
449 private:
450 typename Traits::LocalBasisType basis_;
451 typename Traits::LocalCoefficientsType coefficients_;
452 typename Traits::LocalInterpolationType interpolation_;
453 };
454
455}
456
457#endif
Nédélec elements of the first kind for simplex elements.
Definition: nedelec1stkindsimplex.hh:401
Nedelec1stKindSimplexLocalFiniteElement()=default
Default constructor.
Nedelec1stKindSimplexLocalFiniteElement(std::bitset< dim *(dim+1)/2 > s)
Constructor with explicitly given edge orientations.
Definition: nedelec1stkindsimplex.hh:419
GeometryType
Type representing VTK's entity geometry types.
Definition: common.hh:130
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
constexpr GeometryType simplex(unsigned int dim)
Returns a GeometryType representing a simplex of dimension dim.
Definition: type.hh:461
void interpolate(const F &f, const GFS &gfs, XG &xg)
interpolation from a given grid function
Definition: interpolate.hh:177
constexpr T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:289
Dune namespace.
Definition: alignedallocator.hh:11
D DomainType
domain type
Definition: localbasis.hh:43
traits helper struct
Definition: localfiniteelementtraits.hh:11
LB LocalBasisType
Definition: localfiniteelementtraits.hh:14
LC LocalCoefficientsType
Definition: localfiniteelementtraits.hh:18
LI LocalInterpolationType
Definition: localfiniteelementtraits.hh:22
A unique label for each type of element that can occur in a grid.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)