DUNE PDELab (2.8)

solvers.hh
1// -*- tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=8 sw=2 sts=2:
3#ifndef DUNE_PDELAB_BACKEND_EIGEN_SOLVERS_HH
4#define DUNE_PDELAB_BACKEND_EIGEN_SOLVERS_HH
5
8
9#include <dune/pdelab/constraints/common/constraints.hh>
10
11#include "../solver.hh"
12
13#if HAVE_EIGEN
14
15#include <Eigen/Eigen>
16#include <Eigen/Sparse>
17
18namespace Dune {
19 namespace PDELab {
20
21 //==============================================================================
22 // Here we add some standard linear solvers conforming to the linear solver
23 // interface required to solve linear and nonlinear problems.
24 //==============================================================================
25
26 template<class PreconditionerImp>
27 class EigenBackend_BiCGSTAB_Base
28 : public LinearResultStorage
29 {
30 public:
36 explicit EigenBackend_BiCGSTAB_Base(unsigned maxiter_=5000)
37 : maxiter(maxiter_)
38 {}
39
47 template<class M, class V, class W>
48 void apply(M& A, V& z, W& r, typename W::field_type reduction)
49 {
50 using Backend::Native;
51 using Backend::native;
52 // PreconditionerImp preconditioner;
53 using Mat = Native<M>;
54 ::Eigen::BiCGSTAB<Mat, PreconditionerImp> solver;
55 solver.setMaxIterations(maxiter);
56 solver.setTolerance(reduction);
57 Dune::Timer watch;
58 watch.reset();
59 solver.compute(native(A));
60 native(z) = solver.solve(native(r));
61 double elapsed = watch.elapsed();
62
63 res.converged = solver.info() == ::Eigen::ComputationInfo::Success;
64 res.iterations = solver.iterations();
65 res.elapsed = elapsed;
66 res.reduction = solver.error();
67 res.conv_rate = 0;
68 }
69
70 public:
71 template<class V>
72 typename Dune::template FieldTraits<typename V::ElementType >::real_type norm(const V& v) const
73 {
74 return Backend::native(v).norm();
75 }
76
77 private:
78 unsigned maxiter;
79 int verbose;
80 };
81
82 class EigenBackend_BiCGSTAB_IILU
83 : public EigenBackend_BiCGSTAB_Base<::Eigen::IncompleteLUT<double> >
84 {
85 public:
86 explicit EigenBackend_BiCGSTAB_IILU(unsigned maxiter_=5000)
87 : EigenBackend_BiCGSTAB_Base(maxiter_)
88 {
89 }
90 };
91
92 class EigenBackend_BiCGSTAB_Diagonal
93 : public EigenBackend_BiCGSTAB_Base<::Eigen::DiagonalPreconditioner<double> >
94 {
95 public:
96 explicit EigenBackend_BiCGSTAB_Diagonal(unsigned maxiter_=5000)
97 : EigenBackend_BiCGSTAB_Base(maxiter_)
98 {}
99 };
100
101 template< class Preconditioner, int UpLo >
102 class EigenBackend_CG_Base
103 : public SequentialNorm, public LinearResultStorage
104 {
105 public:
111 explicit EigenBackend_CG_Base(unsigned maxiter_=5000)
112 : maxiter(maxiter_)
113 {}
114
122 template<class M, class V, class W>
123 void apply(M& A, V& z, W& r, typename W::field_type reduction)
124 {
125 using Backend::native;
126 using Mat = Backend::Native<M>;
127 ::Eigen::ConjugateGradient<Mat, UpLo, Preconditioner> solver;
128 solver.setMaxIterations(maxiter);
129 solver.setTolerance(reduction);
130 Dune::Timer watch;
131 watch.reset();
132 solver.compute(native(A));
133 native(z) = solver.solve(native(r));
134 double elapsed = watch.elapsed();
135
136
137 res.converged = solver.info() == ::Eigen::ComputationInfo::Success;
138 res.iterations = solver.iterations();
139 res.elapsed = elapsed;
140 res.reduction = solver.error();
141 res.conv_rate = 0;
142 }
143
144 private:
145 unsigned maxiter;
146 int verbose;
147 };
148
149
150 class EigenBackend_CG_IILU_Up
151 : public EigenBackend_CG_Base<::Eigen::IncompleteLUT<double>, ::Eigen::Upper >
152 {
153 public:
154 explicit EigenBackend_CG_IILU_Up(unsigned maxiter_=5000)
155 : EigenBackend_CG_Base(maxiter_)
156 {}
157 };
158
159 class EigenBackend_CG_Diagonal_Up
160 : public EigenBackend_CG_Base<::Eigen::DiagonalPreconditioner<double>, ::Eigen::Upper >
161 {
162 public:
163 explicit EigenBackend_CG_Diagonal_Up(unsigned maxiter_=5000)
164 : EigenBackend_CG_Base(maxiter_)
165 {}
166 };
167
168 class EigenBackend_CG_IILU_Lo
169 : public EigenBackend_CG_Base<::Eigen::IncompleteLUT<double>, ::Eigen::Lower >
170 {
171 public:
172 explicit EigenBackend_CG_IILU_Lo(unsigned maxiter_=5000)
173 : EigenBackend_CG_Base(maxiter_)
174 {}
175 };
176
177 class EigenBackend_CG_Diagonal_Lo
178 : public EigenBackend_CG_Base<::Eigen::DiagonalPreconditioner<double>, ::Eigen::Lower >
179 {
180 public:
181 explicit EigenBackend_CG_Diagonal_Lo(unsigned maxiter_=5000)
182 : EigenBackend_CG_Base(maxiter_)
183 {}
184 };
185
186#if EIGEN_VERSION_AT_LEAST(3,2,2)
187 template<template<class, int, class> class Solver, int UpLo>
188#else
189 template<template<class, int> class Solver, int UpLo>
190#endif
191 class EigenBackend_SPD_Base
192 : public SequentialNorm, public LinearResultStorage
193 {
194 public:
200 explicit EigenBackend_SPD_Base()
201 {}
202
210 template<class M, class V, class W>
211 void apply(M& A, V& z, W& r, typename W::field_type reduction)
212 {
213 using Backend::native;
214 using Mat = Backend::Native<M>;
215#if EIGEN_VERSION_AT_LEAST(3,2,2)
216 // use the approximate minimum degree algorithm for the ordering in
217 // the solver. This reproduces the default ordering for the Cholesky
218 // type solvers.
219 Solver<Mat, UpLo, ::Eigen::AMDOrdering<typename Mat::Index> > solver;
220#else
221 Solver<Mat, UpLo> solver;
222#endif
223 Dune::Timer watch;
224 watch.reset();
225 solver.compute(native(A));
226 native(z) = solver.solve(native(r));
227 double elapsed = watch.elapsed();
228
229 res.converged = solver.info() == ::Eigen::ComputationInfo::Success;
230 res.iterations = solver.iterations();
231 res.elapsed = elapsed;
232 res.reduction = solver.error();
233 res.conv_rate = 0;
234 }
235 private:
236 };
237
238 class EigenBackend_SimplicialCholesky_Up
239 : public EigenBackend_SPD_Base<::Eigen::SimplicialCholesky, ::Eigen::Upper >
240 {
241 public:
242 explicit EigenBackend_SimplicialCholesky_Up()
243 {}
244 };
245
246 class EigenBackend_SimplicialCholesky_Lo
247 : public EigenBackend_SPD_Base<::Eigen::SimplicialCholesky, ::Eigen::Lower >
248 {
249 public:
250 explicit EigenBackend_SimplicialCholesky_Lo()
251 {}
252 };
253
254/* class EigenBackend_SimplicialLDLt_Up
255 * : public EigenBackend_SPD_Base<::Eigen::SimplicialLDLt, ::Eigen::Upper >
256 * {
257 * public:
258 * explicit EigenBackend_SimplicialLDLt_Up()
259 * {}
260 * };
261
262 * class EigenBackend_SimplicialLDLt_Lo
263 * : public EigenBackend_SPD_Base<::Eigen::SimplicialLDLt, ::Eigen::Lower >
264 * {
265 * public:
266 * explicit EigenBackend_SimplicialLDLt_Lo()
267 * {}
268 * };
269
270 * class EigenBackend_SimplicialLLt_Up
271 * : public EigenBackend_SPD_Base<::Eigen::SimplicialLLt, ::Eigen::Upper >
272 * {
273 * public:
274 * explicit EigenBackend_SimplicialLLt_Up()
275 * {}
276 * };
277
278 * class EigenBackend_SimplicialLLt_Lo
279 * : public EigenBackend_SPD_Base<::Eigen::SimplicialLLt, ::Eigen::Lower >
280 * {
281 * public:
282 * explicit EigenBackend_SimplicialLLt_Lo()
283 * {}
284 * };
285
286 * class EigenBackend_Cholmod_Up
287 * : public EigenBackend_SPD_Base<::Eigen::CholmodDecomposition, ::Eigen::Upper >
288 * {
289 * public:
290 * explicit EigenBackend_Cholmod_Up()
291 * {}
292 * };
293
294 * class EigenBackend_Cholmod_Lo
295 * : public EigenBackend_SPD_Base<::Eigen::CholmodDecomposition, ::Eigen::Lower >
296 * {
297 * public:
298 * explicit EigenBackend_Cholmod_Lo()
299 * {}
300 * };*/
301
302 class EigenBackend_LeastSquares
303 : public SequentialNorm, public LinearResultStorage
304 {
305 private:
306 const static unsigned int defaultFlag = ::Eigen::ComputeThinU | ::Eigen::ComputeThinV;
307 public:
313 explicit EigenBackend_LeastSquares(unsigned int flags = defaultFlag)
314 : flags_(flags)
315 {}
316
324 template<class M, class V, class W>
325 void apply(M& A, V& z, W& r, typename W::field_type reduction)
326 {
327 Dune::Timer watch;
328 watch.reset();
329 using Backend::native;
330 using Mat = Backend::Native<M>;
331 ::Eigen::JacobiSVD<Mat, ::Eigen::ColPivHouseholderQRPreconditioner> solver(A, flags_);
332 native(z) = solver.solve(native(r));
333 double elapsed = watch.elapsed();
334
335 res.converged = solver.info() == ::Eigen::ComputationInfo::Success;
336 res.iterations = solver.iterations();
337 res.elapsed = elapsed;
338 res.reduction = solver.error();
339 res.conv_rate = 0;
340 }
341 private:
342 unsigned int flags_;
343 };
344
345 } // namespace PDELab
346} // namespace Dune
347
348#endif // HAVE_EIGEN
349
350#endif // DUNE_PDELAB_BACKEND_EIGEN_SOLVERS_HH
A simple stop watch.
Definition: timer.hh:41
void reset() noexcept
Reset timer while keeping the running/stopped state.
Definition: timer.hh:55
double elapsed() const noexcept
Get elapsed user-time from last reset until now/last stop in seconds.
Definition: timer.hh:75
Helpers for dealing with MPI.
Dune namespace.
Definition: alignedallocator.hh:11
A simple timing class.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 22, 23:30, 2024)