DUNE PDELab (2.8)
Dune::ScaledIdentityMatrix< K, n > Class Template Reference
A multiple of the identity matrix of static size. More...
#include <dune/istl/scaledidmatrix.hh>
Public Types | |
enum | { rows = n , cols = n } |
export size More... | |
typedef K | field_type |
export the type representing the field | |
typedef K | block_type |
export the type representing the components | |
typedef std::size_t | size_type |
The type used for the index access and size operations. | |
typedef DiagonalRowVector< K, n > | row_type |
Each row is implemented by a field vector. | |
typedef ContainerWrapperIterator< const WrapperType, reference, reference > | Iterator |
Iterator class for sequential access. | |
typedef Iterator | iterator |
typedef for stl compliant access | |
typedef Iterator | RowIterator |
rename the iterators for easier access | |
typedef row_type::Iterator | ColIterator |
rename the iterators for easier access | |
typedef ContainerWrapperIterator< const WrapperType, const_reference, const_reference > | ConstIterator |
Iterator class for sequential access. | |
typedef ConstIterator | const_iterator |
typedef for stl compliant access | |
typedef ConstIterator | ConstRowIterator |
rename the iterators for easier access | |
typedef const_row_type::ConstIterator | ConstColIterator |
rename the iterators for easier access | |
Public Member Functions | |
ScaledIdentityMatrix () | |
Default constructor. | |
ScaledIdentityMatrix (const K &k) | |
Constructor initializing the whole matrix with a scalar. | |
Iterator | begin () |
begin iterator | |
Iterator | end () |
end iterator | |
Iterator | beforeEnd () |
Iterator | beforeBegin () |
ConstIterator | begin () const |
begin iterator | |
ConstIterator | end () const |
end iterator | |
ConstIterator | beforeEnd () const |
ConstIterator | beforeBegin () const |
ScaledIdentityMatrix & | operator+= (const ScaledIdentityMatrix &y) |
vector space addition | |
ScaledIdentityMatrix & | operator-= (const ScaledIdentityMatrix &y) |
vector space subtraction | |
ScaledIdentityMatrix & | operator+= (const K &k) |
addition to the diagonal | |
ScaledIdentityMatrix & | operator-= (const K &k) |
subtraction from the diagonal | |
ScaledIdentityMatrix & | operator*= (const K &k) |
vector space multiplication with scalar | |
ScaledIdentityMatrix & | operator/= (const K &k) |
vector space division by scalar | |
bool | operator== (const ScaledIdentityMatrix &other) const |
comparison operator | |
bool | operator!= (const ScaledIdentityMatrix &other) const |
incomparison operator | |
template<class X , class Y > | |
void | mv (const X &x, Y &y) const |
y = A x | |
template<class X , class Y > | |
void | mtv (const X &x, Y &y) const |
y = A^T x | |
template<class X , class Y > | |
void | umv (const X &x, Y &y) const |
y += A x | |
template<class X , class Y > | |
void | umtv (const X &x, Y &y) const |
y += A^T x | |
template<class X , class Y > | |
void | umhv (const X &x, Y &y) const |
y += A^H x | |
template<class X , class Y > | |
void | mmv (const X &x, Y &y) const |
y -= A x | |
template<class X , class Y > | |
void | mmtv (const X &x, Y &y) const |
y -= A^T x | |
template<class X , class Y > | |
void | mmhv (const X &x, Y &y) const |
y -= A^H x | |
template<class X , class Y > | |
void | usmv (const K &alpha, const X &x, Y &y) const |
y += alpha A x | |
template<class X , class Y > | |
void | usmtv (const K &alpha, const X &x, Y &y) const |
y += alpha A^T x | |
template<class X , class Y > | |
void | usmhv (const K &alpha, const X &x, Y &y) const |
y += alpha A^H x | |
FieldTraits< field_type >::real_type | frobenius_norm () const |
frobenius norm: sqrt(sum over squared values of entries) | |
FieldTraits< field_type >::real_type | frobenius_norm2 () const |
square of frobenius norm, need for block recursion | |
FieldTraits< field_type >::real_type | infinity_norm () const |
infinity norm (row sum norm, how to generalize for blocks?) | |
FieldTraits< field_type >::real_type | infinity_norm_real () const |
simplified infinity norm (uses Manhattan norm for complex values) | |
template<class V > | |
void | solve (V &x, const V &b) const |
Solve system A x = b. | |
void | invert () |
Compute inverse. | |
K | determinant () const |
calculates the determinant of this matrix | |
size_type | N () const |
number of blocks in row direction | |
size_type | M () const |
number of blocks in column direction | |
bool | exists (size_type i, size_type j) const |
return true when (i,j) is in pattern | |
reference | operator[] (size_type i) |
Return reference object as row replacement. | |
const_reference | operator[] (size_type i) const |
Return const_reference object as row replacement. | |
const K & | diagonal (size_type) const |
Get const reference to diagonal entry. | |
K & | diagonal (size_type) |
Get reference to diagonal entry. | |
const K & | scalar () const |
Get const reference to the scalar diagonal value. | |
K & | scalar () |
Get reference to the scalar diagonal value. | |
Static Public Attributes | |
static constexpr std::size_t | blocklevel = 1 |
We are at the leaf of the block recursion. | |
Detailed Description
template<class K, int n>
class Dune::ScaledIdentityMatrix< K, n >
class Dune::ScaledIdentityMatrix< K, n >
A multiple of the identity matrix of static size.
Member Enumeration Documentation
◆ anonymous enum
template<class K , int n>
anonymous enum |
Member Function Documentation
◆ beforeBegin() [1/2]
template<class K , int n>
|
inline |
- Returns
- an iterator that is positioned before the first row of the matrix.
◆ beforeBegin() [2/2]
template<class K , int n>
|
inline |
- Returns
- an iterator that is positioned before the first row of the matrix.
◆ beforeEnd() [1/2]
template<class K , int n>
|
inline |
- Returns
- an iterator that is positioned before the end iterator of the rows, i.e. at the last row.
◆ beforeEnd() [2/2]
template<class K , int n>
|
inline |
- Returns
- an iterator that is positioned before the end iterator of the rows. i.e. at the last row.
The documentation for this class was generated from the following file:
- dune/istl/scaledidmatrix.hh
|
Legal Statements / Impressum |
Hosted by TU Dresden |
generated with Hugo v0.111.3
(Dec 21, 23:30, 2024)