DUNE PDELab (2.8)

brezzidouglasmarini2simplex2dlocalinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI2_SIMPLEX2D_LOCALINTERPOLATION_HH
4#define DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI2_SIMPLEX2D_LOCALINTERPOLATION_HH
5
6#include <vector>
7
9#include <dune/localfunctions/common/localinterpolation.hh>
10
11namespace Dune
12{
13
22 template<class LB>
24 {
25
26 public:
29 {
30 sign0 = sign1 = sign2 = 1.0;
31 }
32
39 {
40 sign0 = sign1 = sign2 = 1.0;
41 if (s & 1)
42 {
43 sign0 = -1.0;
44 }
45 if (s & 2)
46 {
47 sign1 = -1.0;
48 }
49 if (s & 4)
50 {
51 sign2 = -1.0;
52 }
53
54 m0[0] = 0.5;
55 m0[1] = 0.0;
56 m1[0] = 0.0;
57 m1[1] = 0.5;
58 m2[0] = 0.5;
59 m2[1] = 0.5;
60 n0[0] = 0.0;
61 n0[1] = -1.0;
62 n1[0] = -1.0;
63 n1[1] = 0.0;
64 n2[0] = 1.0/sqrt(2.0);
65 n2[1] = 1.0/sqrt(2.0);
66 c0 = 0.5*n0[0] - 1.0*n0[1];
67 c1 = -1.0*n1[0] + 0.5*n1[1];
68 c2 = 0.5*n2[0] + 0.5*n2[1];
69 }
70
79 template<typename F, typename C>
80 void interpolate(const F& ff, std::vector<C>& out) const
81 {
82 // f gives v*outer normal at a point on the edge!
83 typedef typename LB::Traits::RangeFieldType Scalar;
84 typedef typename LB::Traits::DomainFieldType Vector;
85
86 auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
87
88 out.resize(12);
89 fill(out.begin(), out.end(), 0.0);
90
91 const int qOrder = 4;
93
94 for (typename Dune::QuadratureRule<Scalar,1>::const_iterator it=rule.begin(); it!=rule.end(); ++it)
95 {
96 Scalar qPos = it->position();
97
98 typename LB::Traits::DomainType localPos;
99
100 localPos[0] = qPos;
101 localPos[1] = 0.0;
102 auto y = f(localPos);
103 out[0] += (y[0]*n0[0] + y[1]*n0[1])*it->weight()*sign0/c0;
104 out[1] += (y[0]*n0[0] + y[1]*n0[1])*(1.0 - 2.0*qPos)*it->weight()/c0;
105 out[2] += (y[0]*n0[0] + y[1]*n0[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign0/c0;
106
107 localPos[0] = 0.0;
108 localPos[1] = qPos;
109 y = f(localPos);
110 out[3] += (y[0]*n1[0]+y[1]*n1[1])*it->weight()*sign1/c1;
111 out[4] += (y[0]*n1[0]+y[1]*n1[1])*(2.0*qPos-1.0)*it->weight()/c1;
112 out[5] += (y[0]*n1[0]+y[1]*n1[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign1/c1;
113
114 localPos[0] = 1.0 - qPos;
115 localPos[1] = qPos;
116 y = f(localPos);
117 out[6] += (y[0]*n2[0] + y[1]*n2[1])*it->weight()*sign2/c2;
118 out[7] += (y[0]*n2[0] + y[1]*n2[1])*(1.0 - 2.0*qPos)*it->weight()/c2;
119 out[8] += (y[0]*n2[0] + y[1]*n2[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign2/c2;
120 }
121
122 // a volume part is needed here for dofs: 9 10 11
124
125 for (typename QuadratureRule<Vector,2>::const_iterator it=rule2.begin(); it!=rule2.end(); ++it)
126 {
127 typename LB::Traits::DomainType localPos = it->position();
128 auto y = f(localPos);
129
130 out[9] += y[0]*it->weight();
131 out[10] += y[1]*it->weight();
132 out[11] += (y[0]*(localPos[0]-2.0*localPos[0]*localPos[1]-localPos[0]*localPos[0])
133 +y[1]*(-localPos[1]+2.0*localPos[0]*localPos[1]+localPos[1]*localPos[1]))*it->weight();
134 }
135 }
136
137 private:
138 typename LB::Traits::RangeFieldType sign0, sign1, sign2;
139 typename LB::Traits::DomainType m0, m1, m2;
140 typename LB::Traits::DomainType n0, n1, n2;
141 typename LB::Traits::RangeFieldType c0, c1, c2;
142 };
143} // end namespace Dune
144#endif // DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI2_SIMPLEX2D_LOCALINTERPOLATION_HH
First order Brezzi-Douglas-Marini shape functions on triangles.
Definition: brezzidouglasmarini2simplex2dlocalinterpolation.hh:24
BDM2Simplex2DLocalInterpolation()
Standard constructor.
Definition: brezzidouglasmarini2simplex2dlocalinterpolation.hh:28
void interpolate(const F &ff, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: brezzidouglasmarini2simplex2dlocalinterpolation.hh:80
BDM2Simplex2DLocalInterpolation(unsigned int s)
Make set number s, where 0 <= s < 8.
Definition: brezzidouglasmarini2simplex2dlocalinterpolation.hh:38
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:152
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:280
constexpr GeometryType simplex(unsigned int dim)
Returns a GeometryType representing a simplex of dimension dim.
Definition: type.hh:461
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:233
Dune namespace.
Definition: alignedallocator.hh:11
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Jan 8, 23:30, 2025)