DUNE PDELab (2.8)

brezzidouglasmarini1simplex2dlocalinterpolation.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI1_SIMPLEX2D_LOCALINTERPOLATION_HH
4#define DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI1_SIMPLEX2D_LOCALINTERPOLATION_HH
5
6#include <vector>
7
9#include <dune/localfunctions/common/localinterpolation.hh>
10
11namespace Dune
12{
21 template<class LB>
23 {
24
25 public:
28 {
29 sign0 = sign1 = sign2 = 1.0;
30 }
31
38 {
39 using std::sqrt;
40 sign0 = sign1 = sign2 = 1.0;
41 if (s & 1)
42 {
43 sign0 = -1.0;
44 }
45 if (s & 2)
46 {
47 sign1 = -1.0;
48 }
49 if (s & 4)
50 {
51 sign2 = -1.0;
52 }
53
54 n0[0] = 0.0;
55 n0[1] = -1.0;
56 n1[0] = -1.0;
57 n1[1] = 0.0;
58 n2[0] = 1.0/sqrt(2.0);
59 n2[1] = 1.0/sqrt(2.0);
60 c0 = 0.5*n0[0] - 1.0*n0[1];
61 c1 = -1.0*n1[0] + 0.5*n1[1];
62 c2 = 0.5*n2[0] + 0.5*n2[1];
63 }
64
73 template<typename F, typename C>
74 void interpolate (const F& ff, std::vector<C>& out) const
75 {
76 // f gives v*outer normal at a point on the edge!
77 typedef typename LB::Traits::RangeFieldType Scalar;
78
79 auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
80
81 out.resize(6);
82 fill(out.begin(), out.end(), 0.0);
83
84 const int qOrder = 4;
86
87 for (typename Dune::QuadratureRule<Scalar,1>::const_iterator it=rule.begin(); it!=rule.end(); ++it)
88 {
89 Scalar qPos = it->position();
90 typename LB::Traits::DomainType localPos;
91
92 localPos[0] = qPos;
93 localPos[1] = 0.0;
94 auto y = f(localPos);
95 out[0] += (y[0]*n0[0] + y[1]*n0[1])*it->weight()*sign0/c0;
96 out[3] += (y[0]*n0[0] + y[1]*n0[1])*(2.0*qPos - 1.0)*it->weight()/c0;
97
98 localPos[0] = 0.0;
99 localPos[1] = qPos;
100 y = f(localPos);
101 out[1] += (y[0]*n1[0] + y[1]*n1[1])*it->weight()*sign1/c1;
102 out[4] += (y[0]*n1[0] + y[1]*n1[1])*(1.0 - 2.0*qPos)*it->weight()/c1;
103
104 localPos[0] = 1.0 - qPos;
105 localPos[1] = qPos;
106 y = f(localPos);
107 out[2] += (y[0]*n2[0] + y[1]*n2[1])*it->weight()*sign2/c2;
108 out[5] += (y[0]*n2[0] + y[1]*n2[1])*(2.0*qPos - 1.0)*it->weight()/c2;
109 }
110 }
111
112 private:
113 typename LB::Traits::RangeFieldType sign0,sign1,sign2;
114 typename LB::Traits::DomainType n0,n1,n2;
115 typename LB::Traits::RangeFieldType c0,c1,c2;
116 };
117}
118
119#endif // DUNE_LOCALFUNCTIONS_BREZZIDOUGLASMARINI1_SIMPLEX2D_LOCALINTERPOLATION_HH
First order Brezzi-Douglas-Marini shape functions on the reference triangle.
Definition: brezzidouglasmarini1simplex2dlocalinterpolation.hh:23
void interpolate(const F &ff, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: brezzidouglasmarini1simplex2dlocalinterpolation.hh:74
BDM1Simplex2DLocalInterpolation(unsigned int s)
Make set number s, where 0 <= s < 8.
Definition: brezzidouglasmarini1simplex2dlocalinterpolation.hh:37
BDM1Simplex2DLocalInterpolation()
Standard constructor.
Definition: brezzidouglasmarini1simplex2dlocalinterpolation.hh:27
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:152
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:280
constexpr GeometryType simplex(unsigned int dim)
Returns a GeometryType representing a simplex of dimension dim.
Definition: type.hh:461
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:233
Dune namespace.
Definition: alignedallocator.hh:11
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)