DUNE PDELab (2.8)

arpackpp.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_ISTL_EIGENVALUE_ARPACKPP_HH
4#define DUNE_ISTL_EIGENVALUE_ARPACKPP_HH
5
6#if HAVE_ARPACKPP || defined DOXYGEN
7
8#include <cmath> // provides std::abs, std::pow, std::sqrt
9
10#include <iostream> // provides std::cout, std::endl
11#include <string> // provides std::string
12
13#include <dune/common/fvector.hh> // provides Dune::FieldVector
14#include <dune/common/exceptions.hh> // provides DUNE_THROW(...)
15
16#include <dune/istl/blocklevel.hh> // provides Dune::blockLevel
17#include <dune/istl/bvector.hh> // provides Dune::BlockVector
18#include <dune/istl/istlexception.hh> // provides Dune::ISTLError
19#include <dune/istl/io.hh> // provides Dune::printvector(...)
20
21#ifdef Status
22#undef Status // prevent preprocessor from damaging the ARPACK++
23 // code when "X11/Xlib.h" is included (the latter
24 // defines Status as "#define Status int" and
25 // ARPACK++ provides a class with a method called
26 // Status)
27#endif
28#include "arssym.h" // provides ARSymStdEig
29
30namespace Dune
31{
32
37 namespace Impl {
53 template <class BCRSMatrix>
54 class ArPackPlusPlus_BCRSMatrixWrapper
55 {
56 public:
58 typedef typename BCRSMatrix::field_type Real;
59
60 public:
62 ArPackPlusPlus_BCRSMatrixWrapper (const BCRSMatrix& A)
63 : A_(A),
64 m_(A_.M() * mBlock), n_(A_.N() * nBlock)
65 {
66 // assert that BCRSMatrix type has blocklevel 2
67 static_assert
68 (blockLevel<BCRSMatrix>() == 2,
69 "Only BCRSMatrices with blocklevel 2 are supported.");
70
71 // allocate memory for auxiliary block vector objects
72 // which are compatible to matrix rows / columns
73 domainBlockVector.resize(A_.N());
74 rangeBlockVector.resize(A_.M());
75 }
76
78 inline void multMv (Real* v, Real* w)
79 {
80 // get vector v as an object of appropriate type
81 arrayToDomainBlockVector(v,domainBlockVector);
82
83 // perform matrix-vector product
84 A_.mv(domainBlockVector,rangeBlockVector);
85
86 // get vector w from object of appropriate type
87 rangeBlockVectorToArray(rangeBlockVector,w);
88 };
89
91 inline void multMtMv (Real* v, Real* w)
92 {
93 // get vector v as an object of appropriate type
94 arrayToDomainBlockVector(v,domainBlockVector);
95
96 // perform matrix-vector product
97 A_.mv(domainBlockVector,rangeBlockVector);
98 A_.mtv(rangeBlockVector,domainBlockVector);
99
100 // get vector w from object of appropriate type
101 domainBlockVectorToArray(domainBlockVector,w);
102 };
103
105 inline void multMMtv (Real* v, Real* w)
106 {
107 // get vector v as an object of appropriate type
108 arrayToRangeBlockVector(v,rangeBlockVector);
109
110 // perform matrix-vector product
111 A_.mtv(rangeBlockVector,domainBlockVector);
112 A_.mv(domainBlockVector,rangeBlockVector);
113
114 // get vector w from object of appropriate type
115 rangeBlockVectorToArray(rangeBlockVector,w);
116 };
117
119 inline int nrows () const { return m_; }
120
122 inline int ncols () const { return n_; }
123
124 protected:
125 // Number of rows and columns in each block of the matrix
126 constexpr static int mBlock = BCRSMatrix::block_type::rows;
127 constexpr static int nBlock = BCRSMatrix::block_type::cols;
128
129 // Type of vectors in the domain of the linear map associated with
130 // the matrix, i.e. block vectors compatible to matrix rows
131 constexpr static int dbvBlockSize = nBlock;
132 typedef Dune::FieldVector<Real,dbvBlockSize> DomainBlockVectorBlock;
133 typedef Dune::BlockVector<DomainBlockVectorBlock> DomainBlockVector;
134
135 // Type of vectors in the range of the linear map associated with
136 // the matrix, i.e. block vectors compatible to matrix columns
137 constexpr static int rbvBlockSize = mBlock;
138 typedef Dune::FieldVector<Real,rbvBlockSize> RangeBlockVectorBlock;
139 typedef Dune::BlockVector<RangeBlockVectorBlock> RangeBlockVector;
140
141 // Types for vector index access
142 typedef typename DomainBlockVector::size_type dbv_size_type;
143 typedef typename RangeBlockVector::size_type rbv_size_type;
144 typedef typename DomainBlockVectorBlock::size_type dbvb_size_type;
145 typedef typename RangeBlockVectorBlock::size_type rbvb_size_type;
146
147 // Get vector v from a block vector object which is compatible to
148 // matrix rows
149 static inline void
150 domainBlockVectorToArray (const DomainBlockVector& dbv, Real* v)
151 {
152 for (dbv_size_type block = 0; block < dbv.N(); ++block)
153 for (dbvb_size_type iBlock = 0; iBlock < dbvBlockSize; ++iBlock)
154 v[block*dbvBlockSize + iBlock] = dbv[block][iBlock];
155 }
156
157 // Get vector v from a block vector object which is compatible to
158 // matrix columns
159 static inline void
160 rangeBlockVectorToArray (const RangeBlockVector& rbv, Real* v)
161 {
162 for (rbv_size_type block = 0; block < rbv.N(); ++block)
163 for (rbvb_size_type iBlock = 0; iBlock < rbvBlockSize; ++iBlock)
164 v[block*rbvBlockSize + iBlock] = rbv[block][iBlock];
165 }
166
167 public:
170 static inline void arrayToDomainBlockVector (const Real* v,
171 DomainBlockVector& dbv)
172 {
173 for (dbv_size_type block = 0; block < dbv.N(); ++block)
174 for (dbvb_size_type iBlock = 0; iBlock < dbvBlockSize; ++iBlock)
175 dbv[block][iBlock] = v[block*dbvBlockSize + iBlock];
176 }
177
180 static inline void arrayToRangeBlockVector (const Real* v,
181 RangeBlockVector& rbv)
182 {
183 for (rbv_size_type block = 0; block < rbv.N(); ++block)
184 for (rbvb_size_type iBlock = 0; iBlock < rbvBlockSize; ++iBlock)
185 rbv[block][iBlock] = v[block*rbvBlockSize + iBlock];
186 }
187
188 protected:
189 // The DUNE-ISTL BCRSMatrix
190 const BCRSMatrix& A_;
191
192 // Number of rows and columns in the matrix
193 const int m_, n_;
194
195 // Auxiliary block vector objects which are
196 // compatible to matrix rows / columns
197 mutable DomainBlockVector domainBlockVector;
198 mutable RangeBlockVector rangeBlockVector;
199 };
200 } // end namespace Impl
201
241 template <typename BCRSMatrix, typename BlockVector>
243 {
244 public:
245 typedef typename BlockVector::field_type Real;
246
247 public:
267 const unsigned int nIterationsMax = 100000,
268 const unsigned int verbosity_level = 0)
269 : m_(m), nIterationsMax_(nIterationsMax),
270 verbosity_level_(verbosity_level),
271 nIterations_(0),
272 title_(" ArPackPlusPlus_Algorithms: "),
273 blank_(title_.length(),' ')
274 {}
275
287 inline void computeSymMaxMagnitude (const Real& epsilon,
288 BlockVector& x, Real& lambda) const
289 {
290 // print verbosity information
291 if (verbosity_level_ > 0)
292 std::cout << title_ << "Computing an approximation of "
293 << "the dominant eigenvalue of a matrix which "
294 << "is assumed to be symmetric." << std::endl;
295
296 // use type ArPackPlusPlus_BCRSMatrixWrapper to store matrix information
297 // and to perform the product A*v (LU decomposition is not used)
298 typedef Impl::ArPackPlusPlus_BCRSMatrixWrapper<BCRSMatrix> WrappedMatrix;
299 WrappedMatrix A(m_);
300
301 // get number of rows and columns in A
302 const int nrows = A.nrows();
303 const int ncols = A.ncols();
304
305 // assert that A is square
306 if (nrows != ncols)
307 DUNE_THROW(Dune::ISTLError,"Matrix is not square ("
308 << nrows << "x" << ncols << ").");
309
310 // allocate memory for variables, set parameters
311 const int nev = 1; // Number of eigenvalues to compute
312 int ncv = std::min(20, nrows); // Number of Arnoldi vectors generated at each iteration (0 == auto)
313 const Real tol = epsilon; // Stopping tolerance (relative accuracy of Ritz values) (0 == machine precision)
314 const int maxit = nIterationsMax_*nev; // Maximum number of Arnoldi update iterations allowed (0 == 100*nev)
315 Real* ev = new Real[nev]; // Computed eigenvalues of A
316 const bool ivec = true; // Flag deciding if eigenvectors shall be determined
317 int nconv; // Number of converged eigenvalues
318
319 // define what we need: eigenvalues with largest magnitude
320 char which[] = "LM";
321 ARSymStdEig<Real,WrappedMatrix>
322 dprob(nrows, nev, &A, &WrappedMatrix::multMv, which, ncv, tol, maxit);
323
324 // set ARPACK verbosity mode if requested
325 if (verbosity_level_ > 3) dprob.Trace();
326
327 // find eigenvalues and eigenvectors of A, obtain the eigenvalues
328 nconv = dprob.Eigenvalues(ev,ivec);
329
330 // obtain approximated dominant eigenvalue of A
331 lambda = ev[nev-1];
332
333 // obtain associated approximated eigenvector of A
334 Real* x_raw = dprob.RawEigenvector(nev-1);
335 WrappedMatrix::arrayToDomainBlockVector(x_raw,x);
336
337 // obtain number of Arnoldi update iterations actually taken
338 nIterations_ = dprob.GetIter();
339
340 // compute residual norm
341 BlockVector r(x);
342 Real* Ax_raw = new Real[nrows];
343 A.multMv(x_raw,Ax_raw);
344 WrappedMatrix::arrayToDomainBlockVector(Ax_raw,r);
345 r.axpy(-lambda,x);
346 const Real r_norm = r.two_norm();
347
348 // print verbosity information
349 if (verbosity_level_ > 0)
350 {
351 if (verbosity_level_ > 1)
352 {
353 // print some information about the problem
354 std::cout << blank_ << "Obtained eigenvalues of A by solving "
355 << "A*x = λ*x using the ARPACK++ class ARSym"
356 << "StdEig:" << std::endl;
357 std::cout << blank_ << " converged eigenvalues of A: "
358 << nconv << " / " << nev << std::endl;
359 std::cout << blank_ << " dominant eigenvalue of A: "
360 << lambda << std::endl;
361 }
362 std::cout << blank_ << "Result ("
363 << "#iterations = " << nIterations_ << ", "
364 << "║residual║_2 = " << r_norm << "): "
365 << "λ = " << lambda << std::endl;
366 if (verbosity_level_ > 2)
367 {
368 // print approximated eigenvector via DUNE-ISTL I/O methods
369 Dune::printvector(std::cout,x,blank_+"x",blank_+"row");
370 }
371 }
372
373 // free dynamically allocated memory
374 delete[] Ax_raw;
375 delete[] ev;
376 }
377
389 inline void computeSymMinMagnitude (const Real& epsilon,
390 BlockVector& x, Real& lambda) const
391 {
392 // print verbosity information
393 if (verbosity_level_ > 0)
394 std::cout << title_ << "Computing an approximation of the "
395 << "least dominant eigenvalue of a matrix which "
396 << "is assumed to be symmetric." << std::endl;
397
398 // use type ArPackPlusPlus_BCRSMatrixWrapper to store matrix information
399 // and to perform the product A*v (LU decomposition is not used)
400 typedef Impl::ArPackPlusPlus_BCRSMatrixWrapper<BCRSMatrix> WrappedMatrix;
401 WrappedMatrix A(m_);
402
403 // get number of rows and columns in A
404 const int nrows = A.nrows();
405 const int ncols = A.ncols();
406
407 // assert that A is square
408 if (nrows != ncols)
409 DUNE_THROW(Dune::ISTLError,"Matrix is not square ("
410 << nrows << "x" << ncols << ").");
411
412 // allocate memory for variables, set parameters
413 const int nev = 1; // Number of eigenvalues to compute
414 int ncv = std::min(20, nrows); // Number of Arnoldi vectors generated at each iteration (0 == auto)
415 const Real tol = epsilon; // Stopping tolerance (relative accuracy of Ritz values) (0 == machine precision)
416 const int maxit = nIterationsMax_*nev; // Maximum number of Arnoldi update iterations allowed (0 == 100*nev)
417 Real* ev = new Real[nev]; // Computed eigenvalues of A
418 const bool ivec = true; // Flag deciding if eigenvectors shall be determined
419 int nconv; // Number of converged eigenvalues
420
421 // define what we need: eigenvalues with smallest magnitude
422 char which[] = "SM";
423 ARSymStdEig<Real,WrappedMatrix>
424 dprob(nrows, nev, &A, &WrappedMatrix::multMv, which, ncv, tol, maxit);
425
426 // set ARPACK verbosity mode if requested
427 if (verbosity_level_ > 3) dprob.Trace();
428
429 // find eigenvalues and eigenvectors of A, obtain the eigenvalues
430 nconv = dprob.Eigenvalues(ev,ivec);
431
432 // obtain approximated least dominant eigenvalue of A
433 lambda = ev[nev-1];
434
435 // obtain associated approximated eigenvector of A
436 Real* x_raw = dprob.RawEigenvector(nev-1);
437 WrappedMatrix::arrayToDomainBlockVector(x_raw,x);
438
439 // obtain number of Arnoldi update iterations actually taken
440 nIterations_ = dprob.GetIter();
441
442 // compute residual norm
443 BlockVector r(x);
444 Real* Ax_raw = new Real[nrows];
445 A.multMv(x_raw,Ax_raw);
446 WrappedMatrix::arrayToDomainBlockVector(Ax_raw,r);
447 r.axpy(-lambda,x);
448 const Real r_norm = r.two_norm();
449
450 // print verbosity information
451 if (verbosity_level_ > 0)
452 {
453 if (verbosity_level_ > 1)
454 {
455 // print some information about the problem
456 std::cout << blank_ << "Obtained eigenvalues of A by solving "
457 << "A*x = λ*x using the ARPACK++ class ARSym"
458 << "StdEig:" << std::endl;
459 std::cout << blank_ << " converged eigenvalues of A: "
460 << nconv << " / " << nev << std::endl;
461 std::cout << blank_ << " least dominant eigenvalue of A: "
462 << lambda << std::endl;
463 }
464 std::cout << blank_ << "Result ("
465 << "#iterations = " << nIterations_ << ", "
466 << "║residual║_2 = " << r_norm << "): "
467 << "λ = " << lambda << std::endl;
468 if (verbosity_level_ > 2)
469 {
470 // print approximated eigenvector via DUNE-ISTL I/O methods
471 Dune::printvector(std::cout,x,blank_+"x",blank_+"row");
472 }
473 }
474
475 // free dynamically allocated memory
476 delete[] Ax_raw;
477 delete[] ev;
478 }
479
491 inline void computeSymCond2 (const Real& epsilon, Real& cond_2) const
492 {
493 // print verbosity information
494 if (verbosity_level_ > 0)
495 std::cout << title_ << "Computing an approximation of the "
496 << "spectral condition number of a matrix which "
497 << "is assumed to be symmetric." << std::endl;
498
499 // use type ArPackPlusPlus_BCRSMatrixWrapper to store matrix information
500 // and to perform the product A*v (LU decomposition is not used)
501 typedef Impl::ArPackPlusPlus_BCRSMatrixWrapper<BCRSMatrix> WrappedMatrix;
502 WrappedMatrix A(m_);
503
504 // get number of rows and columns in A
505 const int nrows = A.nrows();
506 const int ncols = A.ncols();
507
508 // assert that A is square
509 if (nrows != ncols)
510 DUNE_THROW(Dune::ISTLError,"Matrix is not square ("
511 << nrows << "x" << ncols << ").");
512
513 // allocate memory for variables, set parameters
514 const int nev = 2; // Number of eigenvalues to compute
515 int ncv = std::min(20, nrows); // Number of Arnoldi vectors generated at each iteration (0 == auto)
516 const Real tol = epsilon; // Stopping tolerance (relative accuracy of Ritz values) (0 == machine precision)
517 const int maxit = nIterationsMax_*nev; // Maximum number of Arnoldi update iterations allowed (0 == 100*nev)
518 Real* ev = new Real[nev]; // Computed eigenvalues of A
519 const bool ivec = true; // Flag deciding if eigenvectors shall be determined
520 int nconv; // Number of converged eigenvalues
521
522 // define what we need: eigenvalues from both ends of the spectrum
523 char which[] = "BE";
524 ARSymStdEig<Real,WrappedMatrix>
525 dprob(nrows, nev, &A, &WrappedMatrix::multMv, which, ncv, tol, maxit);
526
527 // set ARPACK verbosity mode if requested
528 if (verbosity_level_ > 3) dprob.Trace();
529
530 // find eigenvalues and eigenvectors of A, obtain the eigenvalues
531 nconv = dprob.Eigenvalues(ev,ivec);
532
533 // obtain approximated dominant and least dominant eigenvalue of A
534 const Real& lambda_max = ev[nev-1];
535 const Real& lambda_min = ev[0];
536
537 // obtain associated approximated eigenvectors of A
538 Real* x_max_raw = dprob.RawEigenvector(nev-1);
539 Real* x_min_raw = dprob.RawEigenvector(0);
540
541 // obtain approximated spectral condition number of A
542 cond_2 = std::abs(lambda_max / lambda_min);
543
544 // obtain number of Arnoldi update iterations actually taken
545 nIterations_ = dprob.GetIter();
546
547 // compute each residual norm
548 Real* Ax_max_raw = new Real[nrows];
549 Real* Ax_min_raw = new Real[nrows];
550 A.multMv(x_max_raw,Ax_max_raw);
551 A.multMv(x_min_raw,Ax_min_raw);
552 Real r_max_norm = 0.0;
553 Real r_min_norm = 0.0;
554 for (int i = 0; i < nrows; ++i)
555 {
556 r_max_norm += std::pow(Ax_max_raw[i] - lambda_max * x_max_raw[i],2);
557 r_min_norm += std::pow(Ax_min_raw[i] - lambda_min * x_min_raw[i],2);
558 }
559 r_max_norm = std::sqrt(r_max_norm);
560 r_min_norm = std::sqrt(r_min_norm);
561
562 // print verbosity information
563 if (verbosity_level_ > 0)
564 {
565 if (verbosity_level_ > 1)
566 {
567 // print some information about the problem
568 std::cout << blank_ << "Obtained eigenvalues of A by solving "
569 << "A*x = λ*x using the ARPACK++ class ARSym"
570 << "StdEig:" << std::endl;
571 std::cout << blank_ << " converged eigenvalues of A: "
572 << nconv << " / " << nev << std::endl;
573 std::cout << blank_ << " dominant eigenvalue of A: "
574 << lambda_max << std::endl;
575 std::cout << blank_ << " least dominant eigenvalue of A: "
576 << lambda_min << std::endl;
577 std::cout << blank_ << " spectral condition number of A: "
578 << cond_2 << std::endl;
579 }
580 std::cout << blank_ << "Result ("
581 << "#iterations = " << nIterations_ << ", "
582 << "║residual║_2 = {" << r_max_norm << ","
583 << r_min_norm << "}, " << "λ = {"
584 << lambda_max << "," << lambda_min
585 << "}): cond_2 = " << cond_2 << std::endl;
586 }
587
588 // free dynamically allocated memory
589 delete[] Ax_min_raw;
590 delete[] Ax_max_raw;
591 delete[] ev;
592 }
593
607 inline void computeNonSymMax (const Real& epsilon,
608 BlockVector& x, Real& sigma) const
609 {
610 // print verbosity information
611 if (verbosity_level_ > 0)
612 std::cout << title_ << "Computing an approximation of the "
613 << "largest singular value of a matrix which "
614 << "is assumed to be nonsymmetric." << std::endl;
615
616 // use type ArPackPlusPlus_BCRSMatrixWrapper to store matrix information
617 // and to perform the product A^T*A*v (LU decomposition is not used)
618 typedef Impl::ArPackPlusPlus_BCRSMatrixWrapper<BCRSMatrix> WrappedMatrix;
619 WrappedMatrix A(m_);
620
621 // get number of rows and columns in A
622 const int nrows = A.nrows();
623 const int ncols = A.ncols();
624
625 // assert that A has more rows than columns (extend code later to the opposite case!)
626 if (nrows < ncols)
627 DUNE_THROW(Dune::ISTLError,"Matrix has less rows than "
628 << "columns (" << nrows << "x" << ncols << ")."
629 << " This case is not implemented, yet.");
630
631 // allocate memory for variables, set parameters
632 const int nev = 1; // Number of eigenvalues to compute
633 int ncv = std::min(20, nrows); // Number of Arnoldi vectors generated at each iteration (0 == auto)
634 const Real tol = epsilon; // Stopping tolerance (relative accuracy of Ritz values) (0 == machine precision)
635 const int maxit = nIterationsMax_*nev; // Maximum number of Arnoldi update iterations allowed (0 == 100*nev)
636 Real* ev = new Real[nev]; // Computed eigenvalues of A^T*A
637 const bool ivec = true; // Flag deciding if eigenvectors shall be determined
638 int nconv; // Number of converged eigenvalues
639
640 // define what we need: eigenvalues with largest algebraic value
641 char which[] = "LA";
642 ARSymStdEig<Real,WrappedMatrix>
643 dprob(ncols, nev, &A, &WrappedMatrix::multMtMv, which, ncv, tol, maxit);
644
645 // set ARPACK verbosity mode if requested
646 if (verbosity_level_ > 3) dprob.Trace();
647
648 // find eigenvalues and eigenvectors of A^T*A, obtain the eigenvalues
649 nconv = dprob.Eigenvalues(ev,ivec);
650
651 // obtain approximated largest eigenvalue of A^T*A
652 const Real& lambda = ev[nev-1];
653
654 // obtain associated approximated eigenvector of A^T*A
655 Real* x_raw = dprob.RawEigenvector(nev-1);
656 WrappedMatrix::arrayToDomainBlockVector(x_raw,x);
657
658 // obtain number of Arnoldi update iterations actually taken
659 nIterations_ = dprob.GetIter();
660
661 // compute residual norm
662 BlockVector r(x);
663 Real* AtAx_raw = new Real[ncols];
664 A.multMtMv(x_raw,AtAx_raw);
665 WrappedMatrix::arrayToDomainBlockVector(AtAx_raw,r);
666 r.axpy(-lambda,x);
667 const Real r_norm = r.two_norm();
668
669 // calculate largest singular value of A (note that
670 // x is right-singular / left-singular vector of A)
671 sigma = std::sqrt(lambda);
672
673 // print verbosity information
674 if (verbosity_level_ > 0)
675 {
676 if (verbosity_level_ > 1)
677 {
678 // print some information about the problem
679 std::cout << blank_ << "Obtained singular values of A by sol"
680 << "ving (A^T*A)*x = σ²*x using the ARPACK++ "
681 << "class ARSymStdEig:" << std::endl;
682 std::cout << blank_ << " converged eigenvalues of A^T*A: "
683 << nconv << " / " << nev << std::endl;
684 std::cout << blank_ << " largest eigenvalue of A^T*A: "
685 << lambda << std::endl;
686 std::cout << blank_ << " => largest singular value of A: "
687 << sigma << std::endl;
688 }
689 std::cout << blank_ << "Result ("
690 << "#iterations = " << nIterations_ << ", "
691 << "║residual║_2 = " << r_norm << "): "
692 << "σ = " << sigma << std::endl;
693 if (verbosity_level_ > 2)
694 {
695 // print approximated right-singular / left-singular vector
696 // via DUNE-ISTL I/O methods
697 Dune::printvector(std::cout,x,blank_+"x",blank_+"row");
698 }
699 }
700
701 // free dynamically allocated memory
702 delete[] AtAx_raw;
703 delete[] ev;
704 }
705
719 inline void computeNonSymMin (const Real& epsilon,
720 BlockVector& x, Real& sigma) const
721 {
722 // print verbosity information
723 if (verbosity_level_ > 0)
724 std::cout << title_ << "Computing an approximation of the "
725 << "smallest singular value of a matrix which "
726 << "is assumed to be nonsymmetric." << std::endl;
727
728 // use type ArPackPlusPlus_BCRSMatrixWrapper to store matrix information
729 // and to perform the product A^T*A*v (LU decomposition is not used)
730 typedef Impl::ArPackPlusPlus_BCRSMatrixWrapper<BCRSMatrix> WrappedMatrix;
731 WrappedMatrix A(m_);
732
733 // get number of rows and columns in A
734 const int nrows = A.nrows();
735 const int ncols = A.ncols();
736
737 // assert that A has more rows than columns (extend code later to the opposite case!)
738 if (nrows < ncols)
739 DUNE_THROW(Dune::ISTLError,"Matrix has less rows than "
740 << "columns (" << nrows << "x" << ncols << ")."
741 << " This case is not implemented, yet.");
742
743 // allocate memory for variables, set parameters
744 const int nev = 1; // Number of eigenvalues to compute
745 int ncv = std::min(20, nrows); // Number of Arnoldi vectors generated at each iteration (0 == auto)
746 const Real tol = epsilon; // Stopping tolerance (relative accuracy of Ritz values) (0 == machine precision)
747 const int maxit = nIterationsMax_*nev; // Maximum number of Arnoldi update iterations allowed (0 == 100*nev)
748 Real* ev = new Real[nev]; // Computed eigenvalues of A^T*A
749 const bool ivec = true; // Flag deciding if eigenvectors shall be determined
750 int nconv; // Number of converged eigenvalues
751
752 // define what we need: eigenvalues with smallest algebraic value
753 char which[] = "SA";
754 ARSymStdEig<Real,WrappedMatrix>
755 dprob(ncols, nev, &A, &WrappedMatrix::multMtMv, which, ncv, tol, maxit);
756
757 // set ARPACK verbosity mode if requested
758 if (verbosity_level_ > 3) dprob.Trace();
759
760 // find eigenvalues and eigenvectors of A^T*A, obtain the eigenvalues
761 nconv = dprob.Eigenvalues(ev,ivec);
762
763 // obtain approximated smallest eigenvalue of A^T*A
764 const Real& lambda = ev[nev-1];
765
766 // obtain associated approximated eigenvector of A^T*A
767 Real* x_raw = dprob.RawEigenvector(nev-1);
768 WrappedMatrix::arrayToDomainBlockVector(x_raw,x);
769
770 // obtain number of Arnoldi update iterations actually taken
771 nIterations_ = dprob.GetIter();
772
773 // compute residual norm
774 BlockVector r(x);
775 Real* AtAx_raw = new Real[ncols];
776 A.multMtMv(x_raw,AtAx_raw);
777 WrappedMatrix::arrayToDomainBlockVector(AtAx_raw,r);
778 r.axpy(-lambda,x);
779 const Real r_norm = r.two_norm();
780
781 // calculate smallest singular value of A (note that
782 // x is right-singular / left-singular vector of A)
783 sigma = std::sqrt(lambda);
784
785 // print verbosity information
786 if (verbosity_level_ > 0)
787 {
788 if (verbosity_level_ > 1)
789 {
790 // print some information about the problem
791 std::cout << blank_ << "Obtained singular values of A by sol"
792 << "ving (A^T*A)*x = σ²*x using the ARPACK++ "
793 << "class ARSymStdEig:" << std::endl;
794 std::cout << blank_ << " converged eigenvalues of A^T*A: "
795 << nconv << " / " << nev << std::endl;
796 std::cout << blank_ << " smallest eigenvalue of A^T*A: "
797 << lambda << std::endl;
798 std::cout << blank_ << " => smallest singular value of A: "
799 << sigma << std::endl;
800 }
801 std::cout << blank_ << "Result ("
802 << "#iterations = " << nIterations_ << ", "
803 << "║residual║_2 = " << r_norm << "): "
804 << "σ = " << sigma << std::endl;
805 if (verbosity_level_ > 2)
806 {
807 // print approximated right-singular / left-singular vector
808 // via DUNE-ISTL I/O methods
809 Dune::printvector(std::cout,x,blank_+"x",blank_+"row");
810 }
811 }
812
813 // free dynamically allocated memory
814 delete[] AtAx_raw;
815 delete[] ev;
816 }
817
828 inline void computeNonSymCond2 (const Real& epsilon, Real& cond_2) const
829 {
830 // print verbosity information
831 if (verbosity_level_ > 0)
832 std::cout << title_ << "Computing an approximation of the "
833 << "spectral condition number of a matrix which "
834 << "is assumed to be nonsymmetric." << std::endl;
835
836 // use type ArPackPlusPlus_BCRSMatrixWrapper to store matrix information
837 // and to perform the product A^T*A*v (LU decomposition is not used)
838 typedef Impl::ArPackPlusPlus_BCRSMatrixWrapper<BCRSMatrix> WrappedMatrix;
839 WrappedMatrix A(m_);
840
841 // get number of rows and columns in A
842 const int nrows = A.nrows();
843 const int ncols = A.ncols();
844
845 // assert that A has more rows than columns (extend code later to the opposite case!)
846 if (nrows < ncols)
847 DUNE_THROW(Dune::ISTLError,"Matrix has less rows than "
848 << "columns (" << nrows << "x" << ncols << ")."
849 << " This case is not implemented, yet.");
850
851 // allocate memory for variables, set parameters
852 const int nev = 2; // Number of eigenvalues to compute
853 int ncv = std::min(20, nrows); // Number of Arnoldi vectors generated at each iteration (0 == auto)
854 const Real tol = epsilon; // Stopping tolerance (relative accuracy of Ritz values) (0 == machine precision)
855 const int maxit = nIterationsMax_*nev; // Maximum number of Arnoldi update iterations allowed (0 == 100*nev)
856 Real* ev = new Real[nev]; // Computed eigenvalues of A^T*A
857 const bool ivec = true; // Flag deciding if eigenvectors shall be determined
858 int nconv; // Number of converged eigenvalues
859
860 // define what we need: eigenvalues from both ends of the spectrum
861 char which[] = "BE";
862 ARSymStdEig<Real,WrappedMatrix>
863 dprob(ncols, nev, &A, &WrappedMatrix::multMtMv, which, ncv, tol, maxit);
864
865 // set ARPACK verbosity mode if requested
866 if (verbosity_level_ > 3) dprob.Trace();
867
868 // find eigenvalues and eigenvectors of A^T*A, obtain the eigenvalues
869 nconv = dprob.Eigenvalues(ev,ivec);
870
871 // obtain approximated largest and smallest eigenvalue of A^T*A
872 const Real& lambda_max = ev[nev-1];
873 const Real& lambda_min = ev[0];
874
875 // obtain associated approximated eigenvectors of A^T*A
876 Real* x_max_raw = dprob.RawEigenvector(nev-1);
877 Real* x_min_raw = dprob.RawEigenvector(0);
878
879 // obtain number of Arnoldi update iterations actually taken
880 nIterations_ = dprob.GetIter();
881
882 // compute each residual norm
883 Real* AtAx_max_raw = new Real[ncols];
884 Real* AtAx_min_raw = new Real[ncols];
885 A.multMtMv(x_max_raw,AtAx_max_raw);
886 A.multMtMv(x_min_raw,AtAx_min_raw);
887 Real r_max_norm = 0.0;
888 Real r_min_norm = 0.0;
889 for (int i = 0; i < ncols; ++i)
890 {
891 r_max_norm += std::pow(AtAx_max_raw[i] - lambda_max * x_max_raw[i],2);
892 r_min_norm += std::pow(AtAx_min_raw[i] - lambda_min * x_min_raw[i],2);
893 }
894 r_max_norm = std::sqrt(r_max_norm);
895 r_min_norm = std::sqrt(r_min_norm);
896
897 // calculate largest and smallest singular value of A
898 const Real sigma_max = std::sqrt(lambda_max);
899 const Real sigma_min = std::sqrt(lambda_min);
900
901 // obtain approximated spectral condition number of A
902 cond_2 = sigma_max / sigma_min;
903
904 // print verbosity information
905 if (verbosity_level_ > 0)
906 {
907 if (verbosity_level_ > 1)
908 {
909 // print some information about the problem
910 std::cout << blank_ << "Obtained singular values of A by sol"
911 << "ving (A^T*A)*x = σ²*x using the ARPACK++ "
912 << "class ARSymStdEig:" << std::endl;
913 std::cout << blank_ << " converged eigenvalues of A^T*A: "
914 << nconv << " / " << nev << std::endl;
915 std::cout << blank_ << " largest eigenvalue of A^T*A: "
916 << lambda_max << std::endl;
917 std::cout << blank_ << " smallest eigenvalue of A^T*A: "
918 << lambda_min << std::endl;
919 std::cout << blank_ << " => largest singular value of A: "
920 << sigma_max << std::endl;
921 std::cout << blank_ << " => smallest singular value of A: "
922 << sigma_min << std::endl;
923 }
924 std::cout << blank_ << "Result ("
925 << "#iterations = " << nIterations_ << ", "
926 << "║residual║_2 = {" << r_max_norm << ","
927 << r_min_norm << "}, " << "σ = {"
928 << sigma_max << "," << sigma_min
929 << "}): cond_2 = " << cond_2 << std::endl;
930 }
931
932 // free dynamically allocated memory
933 delete[] AtAx_min_raw;
934 delete[] AtAx_max_raw;
935 delete[] ev;
936 }
937
942 inline unsigned int getIterationCount () const
943 {
944 if (nIterations_ == 0)
945 DUNE_THROW(Dune::ISTLError,"No algorithm applied, yet.");
946
947 return nIterations_;
948 }
949
950 protected:
951 // parameters related to iterative eigenvalue algorithms
952 const BCRSMatrix& m_;
953 const unsigned int nIterationsMax_;
954
955 // verbosity setting
956 const unsigned int verbosity_level_;
957
958 // memory for storing temporary variables (mutable as they shall
959 // just be effectless auxiliary variables of the const apply*(...)
960 // methods)
961 mutable unsigned int nIterations_;
962
963 // constants for printing verbosity information
964 const std::string title_;
965 const std::string blank_;
966 };
967
970} // namespace Dune
971
972#endif // HAVE_ARPACKPP
973
974#endif // DUNE_ISTL_EIGENVALUE_ARPACKPP_HH
Helper functions for determining the vector/matrix block level.
This file implements a vector space as a tensor product of a given vector space. The number of compon...
Wrapper to use a range of ARPACK++ eigenvalue solvers.
Definition: arpackpp.hh:243
unsigned int getIterationCount() const
Return the number of iterations in last application of an algorithm.
Definition: arpackpp.hh:942
void computeSymMaxMagnitude(const Real &epsilon, BlockVector &x, Real &lambda) const
Assume the matrix to be square, symmetric and perform IRLM to compute an approximation lambda of its ...
Definition: arpackpp.hh:287
void computeSymMinMagnitude(const Real &epsilon, BlockVector &x, Real &lambda) const
Assume the matrix to be square, symmetric and perform IRLM to compute an approximation lambda of its ...
Definition: arpackpp.hh:389
ArPackPlusPlus_Algorithms(const BCRSMatrix &m, const unsigned int nIterationsMax=100000, const unsigned int verbosity_level=0)
Construct from required parameters.
Definition: arpackpp.hh:266
void computeSymCond2(const Real &epsilon, Real &cond_2) const
Assume the matrix to be square, symmetric and perform IRLM to compute an approximation of its spectra...
Definition: arpackpp.hh:491
void computeNonSymMin(const Real &epsilon, BlockVector &x, Real &sigma) const
Assume the matrix to be nonsymmetric and perform IRLM to compute an approximation sigma of its smalle...
Definition: arpackpp.hh:719
void computeNonSymCond2(const Real &epsilon, Real &cond_2) const
Assume the matrix to be nonsymmetric and perform IRLM to compute an approximation of its spectral con...
Definition: arpackpp.hh:828
void computeNonSymMax(const Real &epsilon, BlockVector &x, Real &sigma) const
Assume the matrix to be nonsymmetric and perform IRLM to compute an approximation sigma of its larges...
Definition: arpackpp.hh:607
A sparse block matrix with compressed row storage.
Definition: bcrsmatrix.hh:464
typename Imp::BlockTraits< B >::field_type field_type
export the type representing the field
Definition: bcrsmatrix.hh:486
A vector of blocks with memory management.
Definition: bvector.hh:393
typename Imp::BlockTraits< B >::field_type field_type
export the type representing the field
Definition: bvector.hh:399
A::size_type size_type
The type for the index access.
Definition: bvector.hh:408
vector space out of a tensor product of fields.
Definition: fvector.hh:95
derive error class from the base class in common
Definition: istlexception.hh:17
A few common exception classes.
Some generic functions for pretty printing vectors and matrices.
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_THROW(E, m)
Definition: exceptions.hh:216
void printvector(std::ostream &s, const V &v, std::string title, std::string rowtext, int columns=1, int width=10, int precision=2)
Print an ISTL vector.
Definition: io.hh:86
auto min(ADLTag< 0 >, const V &v1, const V &v2)
implements binary Simd::min()
Definition: defaults.hh:87
Dune namespace.
Definition: alignedallocator.hh:11
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)