DUNE PDELab (git)

raviartthomas3cube2dlocalbasis.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS3_CUBE2D_LOCALBASIS_HH
6#define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS3_CUBE2D_LOCALBASIS_HH
7
8#include <bitset>
9#include <numeric>
10#include <vector>
11
13
14#include "../../common/localbasis.hh"
15
16namespace Dune
17{
27 template<class D, class R>
29 {
30
31 public:
34
40 RT3Cube2DLocalBasis (std::bitset<4> s = 0)
41 {
42 sign0 = (s[0]) ? -1.0 : 1.0;
43 sign1 = (s[1]) ? -1.0 : 1.0;
44 sign2 = (s[2]) ? -1.0 : 1.0;
45 sign3 = (s[3]) ? -1.0 : 1.0;
46 }
47
49 unsigned int size () const
50 {
51 return 40;
52 }
53
60 inline void evaluateFunction (const typename Traits::DomainType& in,
61 std::vector<typename Traits::RangeType>& out) const
62 {
63 out.resize(40);
64 auto const& x = in[0], y = in[1];
65
66 const auto tmp1 = - x*(x*(x*(35*x - 80) + 60) - 16) - 1;
67 const auto tmp2 = x*(x*(x*(35*x - 80) + 60) - 16) + 1;
68 const auto tmp3 = 2*y - 1;
69 const auto tmp4 = y*(6*y - 6) + 1;
70 const auto tmp5 = y*(y*(20*y - 30) + 12) - 1;
71 const auto tmp6 = x*(x*(x*(35*x - 60) + 30) - 4);
72 const auto tmp7 = - y*(y*(y*(35*y - 80) + 60) - 16) - 1;
73 const auto tmp8 = y*(y*(y*(35*y - 80) + 60) - 16) + 1;
74 const auto tmp9 = 2*x - 1;
75 const auto tmp10 = x*(6*x - 6) + 1;
76 const auto tmp11 = x*(x*(20*x - 30) + 12) - 1;
77 const auto tmp12 = y*(y*(y*(35*y - 60) + 30) - 4);
78 const auto tmp13 = -x*(x*(x*(7*x - 14) + 9) - 2);
79 const auto tmp14 = x*(x*(x*(7*x - 14) + 9) - 2);
80 const auto tmp15 = x*(x*(2*x - 3) + 1);
81 const auto tmp16 = x*(x*(x*(5*x - 10) + 6) - 1);
82 const auto tmp17 = -y*(y*(y*(7*y - 14) + 9) - 2);
83 const auto tmp18 = y*(y*(2*y - 3) + 1);
84 const auto tmp19 = y*(y*(y*(5*y - 10) + 6) - 1);
85 const auto tmp20 = y*(y*(y*(7*y - 14) + 9) - 2);
86
87 out[0][0]=sign0*tmp1;
88 out[0][1]=0;
89 out[1][0]=(-3.0*tmp2*tmp3);
90 out[1][1]=0;
91 out[2][0]=sign0*(-5.0*tmp2*tmp4);
92 out[2][1]=0;
93 out[3][0]=(-7.0*tmp2*tmp5);
94 out[3][1]=0;
95
96 out[4][0]=sign1*tmp6;
97 out[4][1]=0;
98 out[5][0]=(-3.0*tmp6*tmp3);
99 out[5][1]=0;
100 out[6][0]=sign1*(5.0*tmp6*tmp4);
101 out[6][1]=0;
102 out[7][0]=(-7.0*tmp6*tmp5);
103 out[7][1]=0;
104
105 out[8][0]=0;
106 out[8][1]=sign2*tmp7;
107 out[9][0]=0;
108 out[9][1]=3.0*tmp9*tmp8;
109 out[10][0]=0;
110 out[10][1]=sign2*(-5.0*tmp10*tmp8);
111 out[11][0]=0;
112 out[11][1]=7.0*tmp11*tmp8;
113
114 out[12][0]=0;
115 out[12][1]=sign3*tmp12;
116 out[13][0]=0;
117 out[13][1]=3.0*tmp9*tmp12;
118 out[14][0]=0;
119 out[14][1]=sign3*5.0*tmp10*tmp12;
120 out[15][0]=0;
121 out[15][1]=7.0*tmp11*tmp12;
122
123 out[16][0]=10.0*tmp13;
124 out[16][1]=0;
125 out[17][0]=-30.0*tmp14*tmp3;
126 out[17][1]=0;
127 out[18][0]=-50.0*tmp14*tmp4;
128 out[18][1]=0;
129 out[19][0]=-70.0*tmp14*tmp5;
130 out[19][1]=0;
131 out[20][0]=-30.0*tmp15;
132 out[20][1]=0;
133 out[21][0]=-90.0*tmp15*tmp3;
134 out[21][1]=0;
135 out[22][0]=-150.0*tmp15*tmp4;
136 out[22][1]=0;
137 out[23][0]=-210.0*tmp15*tmp5;
138 out[23][1]=0;
139 out[24][0]=-70.0*tmp16;
140 out[24][1]=0;
141 out[25][0]=-210.0*tmp16*tmp3;
142 out[25][1]=0;
143 out[26][0]=-350.0*tmp16*tmp4;
144 out[26][1]=0;
145 out[27][0]=-490.0*tmp16*tmp5;
146 out[27][1]=0;
147 out[28][0]=0;
148 out[28][1]=10.0*tmp17;
149 out[29][0]=0;
150 out[29][1]=-30.0*tmp18;
151 out[30][0]=0;
152 out[30][1]=-70.0*tmp19;
153 out[31][0]=0;
154 out[31][1]=-30.0*tmp9*tmp20;
155 out[32][0]=0;
156 out[32][1]=-90.0*tmp9*tmp18;
157 out[33][0]=0;
158 out[33][1]=-210.0*tmp9*tmp19;
159 out[34][0]=0;
160 out[34][1]=-50.0*tmp10*tmp20;
161 out[35][0]=0;
162 out[35][1]=-150.0*tmp10*tmp18;
163 out[36][0]=0;
164 out[36][1]=-350.0*tmp10*tmp19;
165 out[37][0]=0;
166 out[37][1]=-70.0*tmp11*tmp20;
167 out[38][0]=0;
168 out[38][1]=-210.0*tmp11*tmp18;
169 out[39][0]=0;
170 out[39][1]=-490.0*tmp11*tmp19;
171 }
172
179 inline void evaluateJacobian (const typename Traits::DomainType& in,
180 std::vector<typename Traits::JacobianType>& out) const
181 {
182 out.resize(40);
183 auto const& x = in[0], y = in[1];
184
185 const auto tmp2 = x*(x*(x*(35*x - 80) + 60) - 16) + 1;
186 const auto tmp3 = 2*y - 1;
187 const auto tmp4 = y*(6*y - 6) + 1;
188 const auto tmp5 = y*(y*(20*y - 30) + 12) - 1;
189 const auto tmp6 = x*(x*(x*(35*x - 60) + 30) - 4);
190 const auto tmp8 = y*(y*(y*(35*y - 80) + 60) - 16) + 1;
191 const auto tmp9 = 2*x - 1;
192 const auto tmp10 = x*(6*x - 6) + 1;
193 const auto tmp11 = x*(x*(20*x - 30) + 12) - 1;
194 const auto tmp12 = y*(y*(y*(35*y - 60) + 30) - 4);
195 const auto tmp14 = x*(x*(x*(7*x - 14) + 9) - 2);
196 const auto tmp15 = x*(x*(2*x - 3) + 1);
197 const auto tmp16 = x*(x*(x*(5*x - 10) + 6) - 1);
198 const auto tmp18 = y*(y*(2*y - 3) + 1);
199 const auto tmp19 = y*(y*(y*(5*y - 10) + 6) - 1);
200 const auto tmp20 = y*(y*(y*(7*y - 14) + 9) - 2);
201 // temporaries tmp1, tmp7, tmp13, tmp17 are not used in jacobian
202
203 const auto dxtmp1 = 16 - x*(x*(140*x - 240) + 120);
204 const auto dxtmp2 = x*(x*(140*x - 240) + 120) - 16;
205 const auto dytmp3 = 2;
206 const auto dytmp4 = 12*y - 6;
207 const auto dytmp5 = y*(60*y - 60) + 12;
208 const auto dxtmp6 = x*(x*(140*x - 180) + 60) - 4;
209 const auto dytmp7 = 16 - y*(y*(140*y - 240) + 120);
210 const auto dytmp8 = y*(y*(140*y - 240) + 120) - 16;
211 const auto dxtmp9 = 2;
212 const auto dxtmp10 = 12*x - 6;
213 const auto dxtmp11 = x*(60*x - 60) + 12;
214 const auto dytmp12 = y*(y*(140*y - 180) + 60) - 4;
215 const auto dxtmp13 = 2 - x*(x*(28*x - 42) + 18);
216 const auto dxtmp14 = x*(x*(28*x - 42) + 18) - 2;
217 const auto dxtmp15 = x*(6*x - 6) + 1;
218 const auto dxtmp16 = x*(x*(20*x - 30) + 12) - 1;
219 const auto dytmp17 = 2 - y*(y*(28*y - 42) + 18);
220 const auto dytmp18 = y*(6*y - 6) + 1;
221 const auto dytmp19 = y*(y*(20*y - 30) + 12) - 1;
222 const auto dytmp20 = y*(y*(28*y - 42) + 18) - 2;
223
224
225 // x-component
226 out[0][0][0]=sign0*dxtmp1;
227 out[0][1][0]=0;
228 out[1][0][0]=(-3.0*dxtmp2*tmp3);
229 out[1][1][0]=0;
230 out[2][0][0]=sign0*(-5.0*dxtmp2*tmp4);
231 out[2][1][0]=0;
232 out[3][0][0]=(-7.0*dxtmp2*tmp5);
233 out[3][1][0]=0;
234
235 out[4][0][0]=sign1*dxtmp6;
236 out[4][1][0]=0;
237 out[5][0][0]=(-3.0*dxtmp6*tmp3);
238 out[5][1][0]=0;
239 out[6][0][0]=sign1*(5.0*dxtmp6*tmp4);
240 out[6][1][0]=0;
241 out[7][0][0]=(-7.0*dxtmp6*tmp5);
242 out[7][1][0]=0;
243
244 out[8][0][0]=0;
245 out[8][1][0]=0;
246 out[9][0][0]=0;
247 out[9][1][0]=3.0*dxtmp9*tmp8;
248 out[10][0][0]=0;
249 out[10][1][0]=sign2*(-5.0*dxtmp10*tmp8);
250 out[11][0][0]=0;
251 out[11][1][0]=7.0*dxtmp11*tmp8;
252
253 out[12][0][0]=0;
254 out[12][1][0]=0;
255 out[13][0][0]=0;
256 out[13][1][0]=3.0*dxtmp9*tmp12;
257 out[14][0][0]=0;
258 out[14][1][0]=sign3*5.0*dxtmp10*tmp12;
259 out[15][0][0]=0;
260 out[15][1][0]=7.0*dxtmp11*tmp12;
261
262 out[16][0][0]=10.0*dxtmp13;
263 out[16][1][0]=0;
264 out[17][0][0]=-30.0*dxtmp14*tmp3;
265 out[17][1][0]=0;
266 out[18][0][0]=-50.0*dxtmp14*tmp4;
267 out[18][1][0]=0;
268 out[19][0][0]=-70.0*dxtmp14*tmp5;
269 out[19][1][0]=0;
270 out[20][0][0]=-30.0*dxtmp15;
271 out[20][1][0]=0;
272 out[21][0][0]=-90.0*dxtmp15*tmp3;
273 out[21][1][0]=0;
274 out[22][0][0]=-150.0*dxtmp15*tmp4;
275 out[22][1][0]=0;
276 out[23][0][0]=-210.0*dxtmp15*tmp5;
277 out[23][1][0]=0;
278 out[24][0][0]=-70.0*dxtmp16;
279 out[24][1][0]=0;
280 out[25][0][0]=-210.0*dxtmp16*tmp3;
281 out[25][1][0]=0;
282 out[26][0][0]=-350.0*dxtmp16*tmp4;
283 out[26][1][0]=0;
284 out[27][0][0]=-490.0*dxtmp16*tmp5;
285 out[27][1][0]=0;
286 out[28][0][0]=0;
287 out[28][1][0]=0;
288 out[29][0][0]=0;
289 out[29][1][0]=0;
290 out[30][0][0]=0;
291 out[30][1][0]=0;
292 out[31][0][0]=0;
293 out[31][1][0]=-30.0*dxtmp9*tmp20;
294 out[32][0][0]=0;
295 out[32][1][0]=-90.0*dxtmp9*tmp18;
296 out[33][0][0]=0;
297 out[33][1][0]=-210.0*dxtmp9*tmp19;
298 out[34][0][0]=0;
299 out[34][1][0]=-50.0*dxtmp10*tmp20;
300 out[35][0][0]=0;
301 out[35][1][0]=-150.0*dxtmp10*tmp18;
302 out[36][0][0]=0;
303 out[36][1][0]=-350.0*dxtmp10*tmp19;
304 out[37][0][0]=0;
305 out[37][1][0]=-70.0*dxtmp11*tmp20;
306 out[38][0][0]=0;
307 out[38][1][0]=-210.0*dxtmp11*tmp18;
308 out[39][0][0]=0;
309 out[39][1][0]=-490.0*dxtmp11*tmp19;
310
311
312 // y-component
313 out[0][0][1]=0;
314 out[0][1][1]=0;
315 out[1][0][1]=(-3.0*tmp2*dytmp3);
316 out[1][1][1]=0;
317 out[2][0][1]=sign0*(-5.0*tmp2*dytmp4);
318 out[2][1][1]=0;
319 out[3][0][1]=(-7.0*tmp2*dytmp5);
320 out[3][1][1]=0;
321
322 out[4][0][1]=0;
323 out[4][1][1]=0;
324 out[5][0][1]=(-3.0*tmp6*dytmp3);
325 out[5][1][1]=0;
326 out[6][0][1]=sign1*(5.0*tmp6*dytmp4);
327 out[6][1][1]=0;
328 out[7][0][1]=(-7.0*tmp6*dytmp5);
329 out[7][1][1]=0;
330
331 out[8][0][1]=0;
332 out[8][1][1]=sign2*dytmp7;
333 out[9][0][1]=0;
334 out[9][1][1]=3.0*tmp9*dytmp8;
335 out[10][0][1]=0;
336 out[10][1][1]=sign2*(-5.0*tmp10*dytmp8);
337 out[11][0][1]=0;
338 out[11][1][1]=7.0*tmp11*dytmp8;
339
340 out[12][0][1]=0;
341 out[12][1][1]=sign3*dytmp12;
342 out[13][0][1]=0;
343 out[13][1][1]=3.0*tmp9*dytmp12;
344 out[14][0][1]=0;
345 out[14][1][1]=sign3*5.0*tmp10*dytmp12;
346 out[15][0][1]=0;
347 out[15][1][1]=7.0*tmp11*dytmp12;
348
349 out[16][0][1]=0;
350 out[16][1][1]=0;
351 out[17][0][1]=-30.0*tmp14*dytmp3;
352 out[17][1][1]=0;
353 out[18][0][1]=-50.0*tmp14*dytmp4;
354 out[18][1][1]=0;
355 out[19][0][1]=-70.0*tmp14*dytmp5;
356 out[19][1][1]=0;
357 out[20][0][1]=0;
358 out[20][1][1]=0;
359 out[21][0][1]=-90.0*tmp15*dytmp3;
360 out[21][1][1]=0;
361 out[22][0][1]=-150.0*tmp15*dytmp4;
362 out[22][1][1]=0;
363 out[23][0][1]=-210.0*tmp15*dytmp5;
364 out[23][1][1]=0;
365 out[24][0][1]=0;
366 out[24][1][1]=0;
367 out[25][0][1]=-210.0*tmp16*dytmp3;
368 out[25][1][1]=0;
369 out[26][0][1]=-350.0*tmp16*dytmp4;
370 out[26][1][1]=0;
371 out[27][0][1]=-490.0*tmp16*dytmp5;
372 out[27][1][1]=0;
373 out[28][0][1]=0;
374 out[28][1][1]=10.0*dytmp17;
375 out[29][0][1]=0;
376 out[29][1][1]=-30.0*dytmp18;
377 out[30][0][1]=0;
378 out[30][1][1]=-70.0*dytmp19;
379 out[31][0][1]=0;
380 out[31][1][1]=-30.0*tmp9*dytmp20;
381 out[32][0][1]=0;
382 out[32][1][1]=-90.0*tmp9*dytmp18;
383 out[33][0][1]=0;
384 out[33][1][1]=-210.0*tmp9*dytmp19;
385 out[34][0][1]=0;
386 out[34][1][1]=-50.0*tmp10*dytmp20;
387 out[35][0][1]=0;
388 out[35][1][1]=-150.0*tmp10*dytmp18;
389 out[36][0][1]=0;
390 out[36][1][1]=-350.0*tmp10*dytmp19;
391 out[37][0][1]=0;
392 out[37][1][1]=-70.0*tmp11*dytmp20;
393 out[38][0][1]=0;
394 out[38][1][1]=-210.0*tmp11*dytmp18;
395 out[39][0][1]=0;
396 out[39][1][1]=-490.0*tmp11*dytmp19;
397
398 }
399
401 void partial (const std::array<unsigned int, 2>& order,
402 const typename Traits::DomainType& in, // position
403 std::vector<typename Traits::RangeType>& out) const // return value
404 {
405 auto totalOrder = std::accumulate(order.begin(), order.end(), 0);
406 if (totalOrder == 0) {
407 evaluateFunction(in, out);
408 } else if (totalOrder == 1) {
409 out.resize(size());
410 auto const direction = std::distance(order.begin(), std::find(order.begin(), order.end(), 1));
411 auto const& x = in[0], y = in[1];
412
413 if (direction == 0) {
414 auto tmp3 = 2*y - 1;
415 auto tmp4 = y*(6*y - 6) + 1;
416 auto tmp5 = y*(y*(20*y - 30) + 12) - 1;
417 auto tmp8 = y*(y*(y*(35*y - 80) + 60) - 16) + 1;
418 auto tmp12 = y*(y*(y*(35*y - 60) + 30) - 4);
419 auto tmp18 = y*(y*(2*y - 3) + 1);
420 auto tmp19 = y*(y*(y*(5*y - 10) + 6) - 1);
421 auto tmp20 = y*(y*(y*(7*y - 14) + 9) - 2);
422
423 auto dxtmp1 = 16 - x*(x*(140*x - 240) + 120);
424 auto dxtmp2 = x*(x*(140*x - 240) + 120) - 16;
425 auto dxtmp6 = x*(x*(140*x - 180) + 60) - 4;
426 auto dxtmp9 = 2;
427 auto dxtmp10 = 12*x - 6;
428 auto dxtmp11 = x*(60*x - 60) + 12;
429 auto dxtmp13 = 2 - x*(x*(28*x - 42) + 18);
430 auto dxtmp14 = x*(x*(28*x - 42) + 18) - 2;
431 auto dxtmp15 = x*(6*x - 6) + 1;
432 auto dxtmp16 = x*(x*(20*x - 30) + 12) - 1;
433
434 out[0][0]=sign0*dxtmp1;
435 out[0][1]=0;
436 out[1][0]=(-3.0*dxtmp2*tmp3);
437 out[1][1]=0;
438 out[2][0]=sign0*(-5.0*dxtmp2*tmp4);
439 out[2][1]=0;
440 out[3][0]=(-7.0*dxtmp2*tmp5);
441 out[3][1]=0;
442
443 out[4][0]=sign1*dxtmp6;
444 out[4][1]=0;
445 out[5][0]=(-3.0*dxtmp6*tmp3);
446 out[5][1]=0;
447 out[6][0]=sign1*(5.0*dxtmp6*tmp4);
448 out[6][1]=0;
449 out[7][0]=(-7.0*dxtmp6*tmp5);
450 out[7][1]=0;
451
452 out[8][0]=0;
453 out[8][1]=0;
454 out[9][0]=0;
455 out[9][1]=3.0*dxtmp9*tmp8;
456 out[10][0]=0;
457 out[10][1]=sign2*(-5.0*dxtmp10*tmp8);
458 out[11][0]=0;
459 out[11][1]=7.0*dxtmp11*tmp8;
460
461 out[12][0]=0;
462 out[12][1]=0;
463 out[13][0]=0;
464 out[13][1]=3.0*dxtmp9*tmp12;
465 out[14][0]=0;
466 out[14][1]=sign3*5.0*dxtmp10*tmp12;
467 out[15][0]=0;
468 out[15][1]=7.0*dxtmp11*tmp12;
469
470 out[16][0]=10.0*dxtmp13;
471 out[16][1]=0;
472 out[17][0]=-30.0*dxtmp14*tmp3;
473 out[17][1]=0;
474 out[18][0]=-50.0*dxtmp14*tmp4;
475 out[18][1]=0;
476 out[19][0]=-70.0*dxtmp14*tmp5;
477 out[19][1]=0;
478 out[20][0]=-30.0*dxtmp15;
479 out[20][1]=0;
480 out[21][0]=-90.0*dxtmp15*tmp3;
481 out[21][1]=0;
482 out[22][0]=-150.0*dxtmp15*tmp4;
483 out[22][1]=0;
484 out[23][0]=-210.0*dxtmp15*tmp5;
485 out[23][1]=0;
486 out[24][0]=-70.0*dxtmp16;
487 out[24][1]=0;
488 out[25][0]=-210.0*dxtmp16*tmp3;
489 out[25][1]=0;
490 out[26][0]=-350.0*dxtmp16*tmp4;
491 out[26][1]=0;
492 out[27][0]=-490.0*dxtmp16*tmp5;
493 out[27][1]=0;
494 out[28][0]=0;
495 out[28][1]=0;
496 out[29][0]=0;
497 out[29][1]=0;
498 out[30][0]=0;
499 out[30][1]=0;
500 out[31][0]=0;
501 out[31][1]=-30.0*dxtmp9*tmp20;
502 out[32][0]=0;
503 out[32][1]=-90.0*dxtmp9*tmp18;
504 out[33][0]=0;
505 out[33][1]=-210.0*dxtmp9*tmp19;
506 out[34][0]=0;
507 out[34][1]=-50.0*dxtmp10*tmp20;
508 out[35][0]=0;
509 out[35][1]=-150.0*dxtmp10*tmp18;
510 out[36][0]=0;
511 out[36][1]=-350.0*dxtmp10*tmp19;
512 out[37][0]=0;
513 out[37][1]=-70.0*dxtmp11*tmp20;
514 out[38][0]=0;
515 out[38][1]=-210.0*dxtmp11*tmp18;
516 out[39][0]=0;
517 out[39][1]=-490.0*dxtmp11*tmp19;
518 } else if (direction == 1) {
519 const auto tmp2 = x*(x*(x*(35*x - 80) + 60) - 16) + 1;
520 const auto tmp6 = x*(x*(x*(35*x - 60) + 30) - 4);
521 const auto tmp9 = 2*x - 1;
522 const auto tmp10 = x*(6*x - 6) + 1;
523 const auto tmp11 = x*(x*(20*x - 30) + 12) - 1;
524 const auto tmp14 = x*(x*(x*(7*x - 14) + 9) - 2);
525 const auto tmp15 = x*(x*(2*x - 3) + 1);
526 const auto tmp16 = x*(x*(x*(5*x - 10) + 6) - 1);
527
528 const auto dytmp3 = 2;
529 const auto dytmp4 = 12*y - 6;
530 const auto dytmp5 = y*(60*y - 60) + 12;
531 const auto dytmp7 = 16 - y*(y*(140*y - 240) + 120);
532 const auto dytmp8 = y*(y*(140*y - 240) + 120) - 16;
533 const auto dytmp12 = y*(y*(140*y - 180) + 60) - 4;
534 const auto dytmp17 = 2 - y*(y*(28*y - 42) + 18);
535 const auto dytmp18 = y*(6*y - 6) + 1;
536 const auto dytmp19 = y*(y*(20*y - 30) + 12) - 1;
537 const auto dytmp20 = y*(y*(28*y - 42) + 18) - 2;
538
539 out[0][0]=0;
540 out[0][1]=0;
541 out[1][0]=(-3.0*tmp2*dytmp3);
542 out[1][1]=0;
543 out[2][0]=sign0*(-5.0*tmp2*dytmp4);
544 out[2][1]=0;
545 out[3][0]=(-7.0*tmp2*dytmp5);
546 out[3][1]=0;
547
548 out[4][0]=0;
549 out[4][1]=0;
550 out[5][0]=(-3.0*tmp6*dytmp3);
551 out[5][1]=0;
552 out[6][0]=sign1*(5.0*tmp6*dytmp4);
553 out[6][1]=0;
554 out[7][0]=(-7.0*tmp6*dytmp5);
555 out[7][1]=0;
556
557 out[8][0]=0;
558 out[8][1]=sign2*dytmp7;
559 out[9][0]=0;
560 out[9][1]=3.0*tmp9*dytmp8;
561 out[10][0]=0;
562 out[10][1]=sign2*(-5.0*tmp10*dytmp8);
563 out[11][0]=0;
564 out[11][1]=7.0*tmp11*dytmp8;
565
566 out[12][0]=0;
567 out[12][1]=sign3*dytmp12;
568 out[13][0]=0;
569 out[13][1]=3.0*tmp9*dytmp12;
570 out[14][0]=0;
571 out[14][1]=sign3*5.0*tmp10*dytmp12;
572 out[15][0]=0;
573 out[15][1]=7.0*tmp11*dytmp12;
574
575 out[16][0]=0;
576 out[16][1]=0;
577 out[17][0]=-30.0*tmp14*dytmp3;
578 out[17][1]=0;
579 out[18][0]=-50.0*tmp14*dytmp4;
580 out[18][1]=0;
581 out[19][0]=-70.0*tmp14*dytmp5;
582 out[19][1]=0;
583 out[20][0]=0;
584 out[20][1]=0;
585 out[21][0]=-90.0*tmp15*dytmp3;
586 out[21][1]=0;
587 out[22][0]=-150.0*tmp15*dytmp4;
588 out[22][1]=0;
589 out[23][0]=-210.0*tmp15*dytmp5;
590 out[23][1]=0;
591 out[24][0]=0;
592 out[24][1]=0;
593 out[25][0]=-210.0*tmp16*dytmp3;
594 out[25][1]=0;
595 out[26][0]=-350.0*tmp16*dytmp4;
596 out[26][1]=0;
597 out[27][0]=-490.0*tmp16*dytmp5;
598 out[27][1]=0;
599 out[28][0]=0;
600 out[28][1]=10.0*dytmp17;
601 out[29][0]=0;
602 out[29][1]=-30.0*dytmp18;
603 out[30][0]=0;
604 out[30][1]=-70.0*dytmp19;
605 out[31][0]=0;
606 out[31][1]=-30.0*tmp9*dytmp20;
607 out[32][0]=0;
608 out[32][1]=-90.0*tmp9*dytmp18;
609 out[33][0]=0;
610 out[33][1]=-210.0*tmp9*dytmp19;
611 out[34][0]=0;
612 out[34][1]=-50.0*tmp10*dytmp20;
613 out[35][0]=0;
614 out[35][1]=-150.0*tmp10*dytmp18;
615 out[36][0]=0;
616 out[36][1]=-350.0*tmp10*dytmp19;
617 out[37][0]=0;
618 out[37][1]=-70.0*tmp11*dytmp20;
619 out[38][0]=0;
620 out[38][1]=-210.0*tmp11*dytmp18;
621 out[39][0]=0;
622 out[39][1]=-490.0*tmp11*dytmp19;
623 } else {
624 DUNE_THROW(RangeError, "Component out of range.");
625 }
626 } else {
627 DUNE_THROW(NotImplemented, "Desired derivative order is not implemented");
628 }
629 }
630
632 unsigned int order () const
633 {
634 return 7;
635 }
636
637 private:
638 R sign0, sign1, sign2, sign3;
639 };
640}
641
642#endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS3_CUBE2D_LOCALBASIS_HH
A dense n x m matrix.
Definition: fmatrix.hh:117
Default exception for dummy implementations.
Definition: exceptions.hh:355
Second order Raviart-Thomas shape functions on the reference quadrilateral.
Definition: raviartthomas3cube2dlocalbasis.hh:29
unsigned int size() const
number of shape functions
Definition: raviartthomas3cube2dlocalbasis.hh:49
void evaluateJacobian(const typename Traits::DomainType &in, std::vector< typename Traits::JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: raviartthomas3cube2dlocalbasis.hh:179
RT3Cube2DLocalBasis(std::bitset< 4 > s=0)
Make set number s, where 0 <= s < 16.
Definition: raviartthomas3cube2dlocalbasis.hh:40
void evaluateFunction(const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate all shape functions.
Definition: raviartthomas3cube2dlocalbasis.hh:60
unsigned int order() const
Polynomial order of the shape functions.
Definition: raviartthomas3cube2dlocalbasis.hh:632
void partial(const std::array< unsigned int, 2 > &order, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate partial derivatives of all shape functions.
Definition: raviartthomas3cube2dlocalbasis.hh:401
Default exception class for range errors.
Definition: exceptions.hh:346
Implements a matrix constructed from a given type representing a field and compile-time given number ...
#define DUNE_THROW(E,...)
Definition: exceptions.hh:312
constexpr T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:279
Dune namespace.
Definition: alignedallocator.hh:13
Type traits for LocalBasisVirtualInterface.
Definition: localbasis.hh:35
D DomainType
domain type
Definition: localbasis.hh:43
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Jan 7, 23:29, 2025)