DUNE PDELab (git)

raviartthomas0cube3dall.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
4// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5#ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS0_CUBE3D_ALL_HH
6#define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS0_CUBE3D_ALL_HH
7
8#include <cstddef>
9#include <numeric>
10#include <vector>
11
13
14#include <dune/localfunctions/common/localbasis.hh>
15#include <dune/localfunctions/common/localkey.hh>
16
17namespace Dune
18{
28 template<class D, class R>
30 {
31 public:
34
36 RT0Cube3DLocalBasis (unsigned int s = 0)
37 {
38 sign0 = sign1 = sign2 = sign3 = sign4 = sign5 = 1.0;
39 if (s&1) sign0 = -1.0;
40 if (s&2) sign1 = -1.0;
41 if (s&4) sign2 = -1.0;
42 if (s&8) sign3 = -1.0;
43 if (s&16) sign4 = -1.0;
44 if (s&32) sign5 = -1.0;
45 }
46
48 unsigned int size () const
49 {
50 return 6;
51 }
52
54 inline void evaluateFunction (const typename Traits::DomainType& in,
55 std::vector<typename Traits::RangeType>& out) const
56 {
57 out.resize(6);
58 out[0][0] = sign0*(in[0]-1.0); out[0][1]=0.0; out[0][2]=0.0;
59 out[1][0] = sign1*(in[0]); out[1][1]=0.0; out[1][2]=0.0;
60 out[2][0] = 0.0; out[2][1]=sign2*(in[1]-1.0); out[2][2]=0.0;
61 out[3][0] = 0.0; out[3][1]=sign3*(in[1]); out[3][2]=0.0;
62 out[4][0] = 0.0; out[4][1]=0.0; out[4][2]=sign4*(in[2]-1.0);
63 out[5][0] = 0.0; out[5][1]=0.0; out[5][2]=sign5*(in[2]);
64 }
65
67 inline void
68 evaluateJacobian (const typename Traits::DomainType& in, // position
69 std::vector<typename Traits::JacobianType>& out) const // return value
70 {
71 out.resize(6);
72 out[0][0][0] = sign0; out[0][0][1] = 0; out[0][0][2] = 0;
73 out[0][1][0] = 0; out[0][1][1] = 0; out[0][1][2] = 0;
74 out[0][2][0] = 0; out[0][2][1] = 0; out[0][2][2] = 0;
75
76 out[1][0][0] = sign1; out[1][0][1] = 0; out[1][0][2] = 0;
77 out[1][1][0] = 0; out[1][1][1] = 0; out[1][1][2] = 0;
78 out[1][2][0] = 0; out[1][2][1] = 0; out[1][2][2] = 0;
79
80 out[2][0][0] = 0; out[2][0][1] = 0; out[2][0][2] = 0;
81 out[2][1][0] = 0; out[2][1][1] = sign2; out[2][1][2] = 0;
82 out[2][2][0] = 0; out[2][2][1] = 0; out[2][2][2] = 0;
83
84 out[3][0][0] = 0; out[3][0][1] = 0; out[3][0][2] = 0;
85 out[3][1][0] = 0; out[3][1][1] = sign3; out[3][1][2] = 0;
86 out[3][2][0] = 0; out[3][2][1] = 0; out[3][2][2] = 0;
87
88 out[4][0][0] = 0; out[4][0][1] = 0; out[4][0][2] = 0;
89 out[4][1][0] = 0; out[4][1][1] = 0; out[4][1][2] = 0;
90 out[4][2][0] = 0; out[4][2][1] = 0; out[4][2][2] = sign4;
91
92 out[5][0][0] = 0; out[5][0][1] = 0; out[5][0][2] = 0;
93 out[5][1][0] = 0; out[5][1][1] = 0; out[5][1][2] = 0;
94 out[5][2][0] = 0; out[5][2][1] = 0; out[5][2][2] = sign5;
95 }
96
98 void partial (const std::array<unsigned int, 3>& order,
99 const typename Traits::DomainType& in, // position
100 std::vector<typename Traits::RangeType>& out) const // return value
101 {
102 auto totalOrder = std::accumulate(order.begin(), order.end(), 0);
103 if (totalOrder == 0) {
104 evaluateFunction(in, out);
105 } else if (totalOrder == 1) {
106 auto const direction = std::distance(order.begin(), std::find(order.begin(), order.end(), 1));
107 out.resize(size());
108
109 for (std::size_t i = 0; i < size(); ++i)
110 out[i][0] = out[i][1] = out[i][2] = 0;
111
112 switch (direction) {
113 case 0:
114 out[0][0] = sign0;
115 out[1][0] = sign1;
116 break;
117 case 1:
118 out[2][1] = sign2;
119 out[3][1] = sign3;
120 break;
121 case 2:
122 out[4][2] = sign4;
123 out[5][2] = sign5;
124 break;
125 default:
126 DUNE_THROW(RangeError, "Component out of range.");
127 }
128 } else {
129 out.resize(size());
130 for (std::size_t i = 0; i < size(); ++i)
131 for (std::size_t j = 0; j < 2; ++j)
132 out[i][j] = 0;
133 }
134
135 }
136
138 unsigned int order () const
139 {
140 return 1;
141 }
142
143 private:
144 R sign0, sign1, sign2, sign3, sign4, sign5;
145 };
146
147
156 template<class LB>
158 {
159 public:
160
162 RT0Cube3DLocalInterpolation (unsigned int s = 0)
163 {
164 sign0 = sign1 = sign2 = sign3 = sign4 = sign5 = 1.0;
165 if (s&1) sign0 *= -1.0;
166 if (s&2) sign1 *= -1.0;
167 if (s&4) sign2 *= -1.0;
168 if (s&8) sign3 *= -1.0;
169 if (s&16) sign4 *= -1.0;
170 if (s&32) sign5 *= -1.0;
171
172 m0[0] = 0.0; m0[1] = 0.5; m0[2] = 0.5;
173 m1[0] = 1.0; m1[1] = 0.5; m1[2] = 0.5;
174 m2[0] = 0.5; m2[1] = 0.0; m2[2] = 0.5;
175 m3[0] = 0.5; m3[1] = 1.0; m3[2] = 0.5;
176 m4[0] = 0.5; m4[1] = 0.5; m4[2] = 0.0;
177 m5[0] = 0.5; m5[1] = 0.5; m5[2] = 1.0;
178
179 n0[0] = -1.0; n0[1] = 0.0; n0[2] = 0.0;
180 n1[0] = 1.0; n1[1] = 0.0; n1[2] = 0.0;
181 n2[0] = 0.0; n2[1] = -1.0; n2[2] = 0.0;
182 n3[0] = 0.0; n3[1] = 1.0; n3[2] = 0.0;
183 n4[0] = 0.0; n4[1] = 0.0; n4[2] =-1.0;
184 n5[0] = 0.0; n5[1] = 0.0; n5[2] = 1.0;
185 }
186
187 template<typename F, typename C>
188 void interpolate (const F& f, std::vector<C>& out) const
189 {
190 // f gives v*outer normal at a point on the edge!
191
192 out.resize(6);
193
194 auto y = f(m0); out[0] = (y[0]*n0[0]+y[1]*n0[1]+y[2]*n0[2])*sign0;
195 y = f(m1); out[1] = (y[0]*n1[0]+y[1]*n1[1]+y[2]*n1[2])*sign1;
196 y = f(m2); out[2] = (y[0]*n2[0]+y[1]*n2[1]+y[2]*n2[2])*sign2;
197 y = f(m3); out[3] = (y[0]*n3[0]+y[1]*n3[1]+y[2]*n3[2])*sign3;
198 y = f(m4); out[4] = (y[0]*n4[0]+y[1]*n4[1]+y[2]*n4[2])*sign4;
199 y = f(m5); out[5] = (y[0]*n5[0]+y[1]*n5[1]+y[2]*n5[2])*sign5;
200 }
201
202 private:
203 typename LB::Traits::RangeFieldType sign0,sign1,sign2,sign3,sign4,sign5;
204 typename LB::Traits::DomainType m0,m1,m2,m3,m4,m5;
205 typename LB::Traits::DomainType n0,n1,n2,n3,n4,n5;
206 };
207
216 {
217 public:
220 {
221 for (std::size_t i=0; i<6; i++)
222 li[i] = LocalKey(i,1,0);
223 }
224
226 std::size_t size () const
227 {
228 return 6;
229 }
230
232 const LocalKey& localKey (std::size_t i) const
233 {
234 return li[i];
235 }
236
237 private:
238 std::vector<LocalKey> li;
239 };
240
241}
242#endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS0_CUBE3D_ALL_HH
A dense n x m matrix.
Definition: fmatrix.hh:117
Describe position of one degree of freedom.
Definition: localkey.hh:24
Definition: raviartthomas0cube3dall.hh:30
unsigned int size() const
number of shape functions
Definition: raviartthomas0cube3dall.hh:48
void evaluateJacobian(const typename Traits::DomainType &in, std::vector< typename Traits::JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: raviartthomas0cube3dall.hh:68
unsigned int order() const
Polynomial order of the shape functions.
Definition: raviartthomas0cube3dall.hh:138
void partial(const std::array< unsigned int, 3 > &order, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate partial derivatives of all shape functions.
Definition: raviartthomas0cube3dall.hh:98
RT0Cube3DLocalBasis(unsigned int s=0)
Make set number s, where 0 <= s < 64.
Definition: raviartthomas0cube3dall.hh:36
void evaluateFunction(const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate all shape functions.
Definition: raviartthomas0cube3dall.hh:54
Definition: raviartthomas0cube3dall.hh:216
RT0Cube3DLocalCoefficients()
Standard constructor.
Definition: raviartthomas0cube3dall.hh:219
std::size_t size() const
number of coefficients
Definition: raviartthomas0cube3dall.hh:226
const LocalKey & localKey(std::size_t i) const
get i'th index
Definition: raviartthomas0cube3dall.hh:232
Definition: raviartthomas0cube3dall.hh:158
RT0Cube3DLocalInterpolation(unsigned int s=0)
Make set number s, where 0 <= s < 64.
Definition: raviartthomas0cube3dall.hh:162
Default exception class for range errors.
Definition: exceptions.hh:254
Implements a matrix constructed from a given type representing a field and compile-time given number ...
#define DUNE_THROW(E, m)
Definition: exceptions.hh:218
constexpr T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:279
Dune namespace.
Definition: alignedallocator.hh:13
Type traits for LocalBasisVirtualInterface.
Definition: localbasis.hh:35
D DomainType
domain type
Definition: localbasis.hh:43
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 23, 23:29, 2024)