5#ifndef DUNE_LOCALFUNCTIONS_BREZZIDOUGLASFORTINMARINI_CUBE_LOCALBASIS_HH
6#define DUNE_LOCALFUNCTIONS_BREZZIDOUGLASFORTINMARINI_CUBE_LOCALBASIS_HH
20#include <dune/localfunctions/common/localbasis.hh>
35 template<
class D,
class R,
unsigned int dim,
unsigned int order>
39 "`BDFMCubeLocalBasis` not implemented for chosen `dim` and `order`." );
44 template<
class D,
class R,
unsigned int dim>
48 "`BDFMCubeLocalBasis` not defined for order 0." );
58 template<
class D,
class R >
71 std::fill(s_.begin(), s_.end(), 1);
81 for (
auto i : range(4))
82 s_[i] = s[i] ? -1 : 1;
86 unsigned int size ()
const {
return 4; }
98 out[0] = {s_[0]*(in[0]-1), 0 };
99 out[1] = {s_[1]*(in[0]) , 0 };
100 out[2] = {0, s_[2]*(in[1]-1)};
101 out[3] = {0, s_[3]*(in[1]) };
114 out[0] = {{s_[0], 0}, {0, 0}};
115 out[1] = {{s_[1], 0}, {0, 0}};
116 out[2] = {{0, 0}, {0, s_[2]}};
117 out[3] = {{0, 0}, {0, s_[3]}};
127 void partial (
const std::array<unsigned int, 2>& order,
129 std::vector<RangeType>& out)
const
132 evaluateFunction(in, out);
138 unsigned int order ()
const {
return 1; }
150 template<
class D,
class R >
163 std::fill(s_.begin(), s_.end(), 1);
173 for (
auto i : range(4))
174 s_[i] = s[i] ? -1 : 1;
178 unsigned int size ()
const {
return 10; }
190 const auto& x = in[0];
191 const auto& y = in[1];
194 out[0] = {pre*s_[0]*(3*x-1), 0};
195 out[1] = { pre*3*(2*y-1), 0};
198 out[2] = {pre*s_[1]*(3*x-2), 0};
199 out[3] = {pre* 3*(2*y-1), 0};
202 out[4] = {0, pre*s_[2]*(3*y-1)};
203 out[5] = {0, pre*3*(2*x-1)};
206 out[6] = {0, pre*s_[3]*(3*y-2)};
207 out[7] = {0, pre*3*(2*x-1)};
209 out[8] = {6*x*(1-x), 0};
211 out[9] = {0, 6*y*(1-y)};
224 const auto& x = in[0];
225 const auto& y = in[1];
227 out[0] = {{s_[0]*(4-6*x), 0}, {0, 0}};
228 out[1] = {{3-6*y, 6-6*x}, {0, 0}};
230 out[2] = {{s_[1]*(6*x-2), 0}, {0, 0}};
231 out[3] = {{6*y-3, 6*x}, {0, 0}};
233 out[4] = {{0, 0}, {0, s_[2]*(4-6*y)}};
234 out[5] = {{0, 0}, {6-6*y, 3-6*x}};
236 out[6] = {{0, 0}, {0, s_[3]*(6*y-2)}};
237 out[7] = {{0, 0}, {6*y, 6*x-3}};
239 out[8] = {{6-12*x, 0}, {0, 0}};
241 out[9] = {{0, 0}, {0, 6-12*y}};
251 void partial (
const std::array<unsigned int, 2>& order,
253 std::vector<RangeType>& out)
const
256 evaluateFunction(in, out);
262 unsigned int order ()
const {
return 2; }
274 template<
class D,
class R >
287 std::fill(s_.begin(), s_.end(), 1);
297 for (
auto i : range(4))
298 s_[i] = s[i] ? -1 : 1;
302 unsigned int size ()
const {
return 18; }
314 const auto& x = in[0];
315 const auto& y = in[1];
318 out[0] = {pre*s_[0]*-1*(10*x*x-8*x+1), 0};
319 out[1] = {pre* 3*(1-3*x)*(2*y-1), 0};
320 out[2] = {pre* s_[0]*-5*(6*y*y-6*y+1), 0};
323 out[3] = {pre*s_[1]*(10*x*x-12*x+3), 0};
324 out[4] = {pre* 3*(3*x-2)*(2*y-1), 0};
325 out[5] = {pre*s_[1]*5*(6*y*y-6*y+1), 0};
328 out[6] = {0, pre*s_[2]*-1*(10*y*y-8*y+1)};
329 out[7] = {0, pre* 3*(1-3*y)*(2*x-1)};
330 out[8] = {0, pre*s_[2]*-5*( 6*x*x-6*x+1)};
333 out[9] = {0, pre*s_[3]*(10*y*y-12*y+3)};
334 out[10] = {0, pre* 3*(3*y-2)*(2*x-1)};
335 out[11] = {0, pre*s_[3]*5*(6*x*x-6*x+1)};
338 out[12] = {pre* 6 , 0};
339 out[14] = {pre*30*(2*x-1), 0};
340 out[16] = {pre*18*(2*y-1), 0};
343 out[13] = {0, pre* 6 };
344 out[15] = {0, pre*18*(2*x-1)};
345 out[17] = {0, pre*30*(2*y-1)};
358 const auto& x = in[0];
359 const auto& y = in[1];
361 out[0] = {{s_[0]*(30*x*x-36*x+9), 0}, {0, 0}};
362 out[1] = {{ 6*(6*x*y-3*x-4*y+2), 6*(3*x*x-4*x+1)}, {0, 0}};
363 out[2] = {{s_[0]*5*(6*y*y-6*y+1), s_[0]*30*(x-1)*(2*y-1)}, {0, 0}};
365 out[3] = {{ s_[1]*30*x*x-24*x+3, 0}, {0, 0}};
366 out[4] = {{ 6*(3*x-1)*(2*y-1), 6*x*(3*x-2)}, {0, 0}};
367 out[5] = {{s_[1]*5*(6*y*y-6*y+1), s_[1]*30*x*(2*y-1)}, {0, 0}};
369 out[6] = {{0, 0}, { 0, s_[2]*(30*y*y-36*y+9)}};
370 out[7] = {{0, 0}, { 6*(3*y*y-4*y+1), 6*(6*y*x-3*y-4*x+2)}};
371 out[8] = {{0, 0}, {s_[2]*30*(y-1)*(2*x-1), s_[2]*5*(6*x*x-6*x+1)}};
373 out[9] = {{0, 0}, { 0, s_[3]*30*y*y-24*y+3}};
374 out[10] = {{0, 0}, { 6*y*(3*y-2), 6*(3*y-1)*(2*x-1)}};
375 out[11] = {{0, 0}, {s_[3]*30*y*(2*x-1), s_[3]*5*(6*x*x-6*x+1)}};
377 out[12] = {{ -6*(2*x-1), 0}, {0, 0}};
378 out[14] = {{ -30*(6*x*x-6*x+1), 0}, {0, 0}};
379 out[16] = {{-18*(2*x-1)*(2*y-1), 36*x*(1-x)}, {0, 0}};
381 out[13] = {{0, 0}, { 0, -6*(2*y-1)}};
382 out[15] = {{0, 0}, {36*y*(1-y), -18*(2*y-1)*(2*x-1)}};
383 out[17] = {{0, 0}, { 0, -30*(6*y*y-6*y+1)}};
393 void partial (
const std::array<unsigned int, 2>& order,
395 std::vector<RangeType>& out)
const
398 evaluateFunction(in, out);
404 unsigned int order ()
const {
return 3; }
unsigned int size() const
number of shape functions
Definition: localbasis.hh:86
unsigned int order() const
Polynomial order of the shape functions.
Definition: localbasis.hh:138
void evaluateFunction(const DomainType &in, std::vector< RangeType > &out) const
Evaluate all shape functions.
Definition: localbasis.hh:94
BDFMCubeLocalBasis()
Standard constructor.
Definition: localbasis.hh:69
void partial(const std::array< unsigned int, 2 > &order, const DomainType &in, std::vector< RangeType > &out) const
Evaluate all partial derivatives of all shape functions.
Definition: localbasis.hh:127
void evaluateJacobian(const DomainType &in, std::vector< JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: localbasis.hh:110
BDFMCubeLocalBasis(std::bitset< 4 > s)
Make set number s, where 0<= s < 16.
Definition: localbasis.hh:79
void evaluateFunction(const DomainType &in, std::vector< RangeType > &out) const
Evaluate all shape functions.
Definition: localbasis.hh:186
void partial(const std::array< unsigned int, 2 > &order, const DomainType &in, std::vector< RangeType > &out) const
Evaluate all partial derivatives of all shape functions.
Definition: localbasis.hh:251
unsigned int size() const
number of shape functions
Definition: localbasis.hh:178
BDFMCubeLocalBasis()
Standard constructor.
Definition: localbasis.hh:161
void evaluateJacobian(const DomainType &in, std::vector< JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: localbasis.hh:220
unsigned int order() const
Polynomial order of the shape functions.
Definition: localbasis.hh:262
BDFMCubeLocalBasis(std::bitset< 4 > s)
Make set number s, where 0<= s < 16.
Definition: localbasis.hh:171
BDFMCubeLocalBasis()
Standard constructor.
Definition: localbasis.hh:285
void evaluateJacobian(const DomainType &in, std::vector< JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: localbasis.hh:354
BDFMCubeLocalBasis(std::bitset< 4 > s)
Make set number s, where 0<= s < 16.
Definition: localbasis.hh:295
unsigned int size() const
number of shape functions
Definition: localbasis.hh:302
unsigned int order() const
Polynomial order of the shape functions.
Definition: localbasis.hh:404
void evaluateFunction(const DomainType &in, std::vector< RangeType > &out) const
Evaluate all shape functions.
Definition: localbasis.hh:310
void partial(const std::array< unsigned int, 2 > &order, const DomainType &in, std::vector< RangeType > &out) const
Evaluate all partial derivatives of all shape functions.
Definition: localbasis.hh:393
Brezzi-Douglas-Fortin-Marini shape functions on a reference cube.
Definition: localbasis.hh:37
A dense n x m matrix.
Definition: fmatrix.hh:117
vector space out of a tensor product of fields.
Definition: fvector.hh:92
Default exception for dummy implementations.
Definition: exceptions.hh:355
Traits for type conversions and type information.
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_THROW(E,...)
Definition: exceptions.hh:312
constexpr T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:279
Some useful basic math stuff.
Dune namespace.
Definition: alignedallocator.hh:13
Utilities for reduction like operations on ranges.
template which always yields a false value
Definition: typetraits.hh:124
Type traits for LocalBasisVirtualInterface.
Definition: localbasis.hh:35