Dune Core Modules (unstable)
Geometry implementation based on local-basis function parametrization. More...
#include <dune/geometry/localfiniteelementgeometry.hh>
Public Types | |
using | ctype = typename LocalBasisTraits::DomainFieldType |
coordinate type | |
using | LocalCoordinate = FieldVector< ctype, mydimension > |
type of local coordinates | |
using | GlobalCoordinate = FieldVector< ctype, coorddimension > |
type of global coordinates | |
using | Volume = decltype(power(std::declval< ctype >(), mydimension)) |
type of volume | |
using | Jacobian = FieldMatrix< ctype, coorddimension, mydimension > |
type of jacobian | |
using | JacobianTransposed = FieldMatrix< ctype, mydimension, coorddimension > |
type of jacobian transposed | |
using | JacobianInverse = FieldMatrix< ctype, mydimension, coorddimension > |
type of jacobian inverse | |
using | JacobianInverseTransposed = FieldMatrix< ctype, coorddimension, mydimension > |
type of jacobian inverse transposed | |
using | ReferenceElements = Dune::ReferenceElements< ctype, mydimension > |
type of reference element | |
Public Member Functions | |
LocalFiniteElementGeometry ()=default | |
Default constructed geometry results in an empty/invalid representation. | |
LocalFiniteElementGeometry (const ReferenceElement &refElement, const LocalFiniteElement &localFE, std::vector< GlobalCoordinate > vertices) | |
Constructor from a vector of coefficients of the LocalBasis parametrizing the geometry. More... | |
template<class Param , std::enable_if_t< std::is_invocable_r_v< GlobalCoordinate, Param, LocalCoordinate >, int > = 0> | |
LocalFiniteElementGeometry (const ReferenceElement &refElement, const LocalFiniteElement &localFE, Param &¶metrization) | |
Constructor from a local parametrization function, mapping local to (curved) global coordinates. More... | |
template<class... Args> | |
LocalFiniteElementGeometry (GeometryType gt, Args &&... args) | |
Constructor, forwarding to the other constructors that take a reference-element. More... | |
int | order () const |
Obtain the (highest) polynomial order of the parametrization. | |
bool | affine () const |
Is this mapping affine? Geometries of order 1 might be affine, but it needs to be checked on non-simplex geometries. | |
GeometryType | type () const |
Obtain the name of the reference element. | |
int | corners () const |
Obtain number of corners of the corresponding reference element. | |
GlobalCoordinate | corner (int i) const |
Obtain coordinates of the i-th corner. | |
GlobalCoordinate | center () const |
Obtain the centroid of the mapping's image. | |
GlobalCoordinate | global (const LocalCoordinate &local) const |
Evaluate the coordinate mapping. More... | |
LocalCoordinate (const GlobalCoordinate &y, Impl::GaussNewtonOptions< ctype > opts={}) const | |
Evaluate the inverse coordinate mapping. More... | |
ctype | integrationElement (const LocalCoordinate &local) const |
Obtain the integration element. More... | |
Volume | volume (Impl::ConvergenceOptions< ctype > opts={}) const |
Obtain the volume of the mapping's image. More... | |
Volume | volume (const QuadratureRule< ctype, mydimension > &quadRule) const |
Obtain the volume of the mapping's image by given quadrature rules. | |
Jacobian | jacobian (const LocalCoordinate &local) const |
Obtain the Jacobian. More... | |
JacobianTransposed | jacobianTransposed (const LocalCoordinate &local) const |
Obtain the transposed of the Jacobian. More... | |
JacobianInverse | jacobianInverse (const LocalCoordinate &local) const |
Obtain the Jacobian's inverse. More... | |
JacobianInverseTransposed | jacobianInverseTransposed (const LocalCoordinate &local) const |
Obtain the transposed of the Jacobian's inverse. More... | |
const LocalFiniteElement & | finiteElement () const |
Obtain the local finite-element. | |
const std::vector< GlobalCoordinate > & | coefficients () const |
Obtain the coefficients of the parametrization. | |
const LocalBasis & | localBasis () const |
The local basis of the stored local finite-element. | |
Static Public Attributes | |
static const int | mydimension = LocalBasisTraits::dimDomain |
geometry dimension | |
static const int | coorddimension = cdim |
coordinate dimension | |
Detailed Description
class Dune::LocalFiniteElementGeometry< LFE, cdim >
Geometry implementation based on local-basis function parametrization.
Parametrization of the geometry by any localfunction interpolated into a local finite-element space.
- Template Parameters
-
LFE Type of a local finite-element. cdim Coordinate dimension.
Constructor & Destructor Documentation
◆ LocalFiniteElementGeometry() [1/3]
|
inline |
Constructor from a vector of coefficients of the LocalBasis parametrizing the geometry.
- Parameters
-
[in] refElement reference element for the geometry [in] localFE Local finite-element to use for the parametrization [in] vertices Coefficients of the local interpolation into the basis
The vertices are the coefficients of a local interpolation in the local finite-element. For Lagrange local bases, these correspond to vertices on the curved geometry in the local Lagrange nodes.
- Note
- The vertices are stored internally, so if possible move an external vertex storage to this constructor
◆ LocalFiniteElementGeometry() [2/3]
|
inline |
Constructor from a local parametrization function, mapping local to (curved) global coordinates.
- Parameters
-
[in] refElement reference element for the geometry [in] localFE Local finite-element to use for the parametrization [in] parametrization parametrization function with signature GlobalCoordinate(LocalCoordinate)
The parametrization function is not stored in the class, but interpolated into the local finite-element basis and the computed interpolation coefficients are stored.
◆ LocalFiniteElementGeometry() [3/3]
|
inlineexplicit |
Constructor, forwarding to the other constructors that take a reference-element.
- Parameters
-
[in] gt geometry type [in] args... arguments passed to the other constructors
Member Function Documentation
◆ global()
|
inline |
Evaluate the coordinate mapping.
Implements a linear combination of local basis functions scaled by the vertices as coefficients.
\[ global = \sum_i v_i \psi_i(local) \]
- Parameters
-
[in] local local coordinate to map
- Returns
- corresponding global coordinate
References Dune::DenseVector< V >::axpy(), and Dune::LocalFiniteElementGeometry< LFE, cdim >::localBasis().
Referenced by Dune::LocalFiniteElementGeometry< LFE, cdim >::center(), and Dune::LocalFiniteElementGeometry< LFE, cdim >::corner().
◆ integrationElement()
|
inline |
Obtain the integration element.
If the Jacobian of the geometry is denoted by \(J(x)\), the integration element \(\mu(x)\) is given by
\[ \mu(x) = \sqrt{|\det (J^T(x) J(x))|}.\]
- Parameters
-
[in] local local coordinate to evaluate the integration element in.
- Returns
- the integration element \(\mu(x)\).
References Dune::LocalFiniteElementGeometry< LFE, cdim >::jacobianTransposed().
Referenced by Dune::LocalFiniteElementGeometry< LFE, cdim >::volume().
◆ jacobian()
|
inline |
Obtain the Jacobian.
- Parameters
-
[in] local local coordinate to evaluate Jacobian in
- Returns
- the matrix corresponding to the Jacobian
References Dune::LocalFiniteElementGeometry< LFE, cdim >::localBasis(), and Dune::FieldMatrix< ctype, coorddimension, mydimension >::rows.
Referenced by Dune::LocalFiniteElementGeometry< LFE, cdim >::jacobianInverse(), and Dune::LocalFiniteElementGeometry< LFE, cdim >::jacobianTransposed().
◆ jacobianInverse()
|
inline |
Obtain the Jacobian's inverse.
The Jacobian's inverse is defined as a pseudo-inverse. If we denote the Jacobian by \(J(x)\), the following condition holds:
\[ J^{-1}(x) J(x) = I. \]
References Dune::LocalFiniteElementGeometry< LFE, cdim >::jacobian().
Referenced by Dune::LocalFiniteElementGeometry< LFE, cdim >::jacobianInverseTransposed().
◆ jacobianInverseTransposed()
|
inline |
Obtain the transposed of the Jacobian's inverse.
The Jacobian's inverse is defined as a pseudo-inverse. If we denote the Jacobian by \(J(x)\), the following condition holds:
\[ J^{-1}(x) J(x) = I. \]
References Dune::LocalFiniteElementGeometry< LFE, cdim >::jacobianInverse(), and Dune::FieldMatrix< K, ROWS, COLS >::transposed().
◆ jacobianTransposed()
|
inline |
Obtain the transposed of the Jacobian.
- Parameters
-
[in] local local coordinate to evaluate Jacobian in
- Returns
- the matrix corresponding to the transposed of the Jacobian
References Dune::LocalFiniteElementGeometry< LFE, cdim >::jacobian(), and Dune::FieldMatrix< K, ROWS, COLS >::transposed().
Referenced by Dune::LocalFiniteElementGeometry< LFE, cdim >::integrationElement().
◆ LocalCoordinate()
|
inline |
Evaluate the inverse coordinate mapping.
- Parameters
-
[in] y Global coordinate to map [in] opts Parameters to control the behavior of the Gauss-Newton algorithm.
- Returns
- For given global coordinate
y
the local coordinatex
that minimizes the function(global(x) - y).two_norm2()
over the local coordinate space spanned by the reference element.
- Exceptions
-
In case of an error indicating that the local coordinate can not be obtained, a Dune::Exception
is thrown, with an error code from `GaussNewtonErrorCode`.
- Note
- It is not guaranteed that the resulting local coordinate is inside the reference element domain.
◆ volume()
|
inline |
Obtain the volume of the mapping's image.
Calculates the volume of the entity by numerical integration. Since the polynomial order of the volume element is not known, iteratively compute numerical integrals with increasing order of the quadrature rules, until tolerance is reached.
- Parameters
-
opts An optional control over the convergence, providing a break tolerance and a maximal iteration count.
The documentation for this class was generated from the following file:
- dune/geometry/localfiniteelementgeometry.hh