Loading [MathJax]/extensions/tex2jax.js

DUNE-GRID-GLUE (2.10)

projection_impl.hh
1// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
2// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-GPL-2.0-only-with-dune-grid-glue-exception
3#include <dune/common/fmatrix.hh>
4
5#include <cmath>
6
7namespace Dune {
8namespace GridGlue {
9
10namespace ProjectionImplementation {
11
22template<typename Coordinate, typename Field>
23inline Coordinate
24corner(unsigned c)
25{
26 Coordinate x(Field(0));
27 if (c == 0)
28 return x;
29 x[c-1] = Field(1);
30 return x;
31}
32
42inline std::pair<unsigned, unsigned>
43edgeToCorners(unsigned edge)
44{
45 switch(edge) {
46 case 0: return {0, 1};
47 case 1: return {0, 2};
48 case 2: return {1, 2};
49 }
50 DUNE_THROW(Dune::Exception, "Unexpected edge number.");
51}
52
68template<typename Coordinate, typename Corners>
69inline typename Corners::value_type
70interpolate(const Coordinate& x, const Corners& corners)
71{
72 auto y = corners[0];
73 for (unsigned i = 0; i < corners.size() - 1; ++i)
74 y.axpy(x[i], corners[i+1] - corners[0]);
75 return y;
76}
77
89template<typename Coordinate, typename Normals>
90inline typename Normals::value_type
91interpolate_unit_normals(const Coordinate& x, const Normals& normals)
92{
93 auto n = interpolate(x, normals);
94 n /= n.two_norm();
95 return n;
96}
97
109template<typename Coordinate, typename Field>
110inline bool
111inside(const Coordinate& x, const Field& epsilon)
112{
113 const unsigned dim = Coordinate::dimension;
114 Field sum(0);
115 for (unsigned i = 0; i < dim-1; ++i) {
116 if (x[i] < -epsilon)
117 return false;
118 sum += x[i];
119 }
120 /* If any xᵢ is NaN, sum will be NaN and this comparison false! */
121 if (sum <= Field(1) + epsilon)
122 return true;
123 return false;
124}
125
126} /* namespace ProjectionImplementation */
127
128template<typename Coordinate>
130::Projection(const Field overlap, const Field max_normal_product)
131 : m_overlap(overlap)
132 , m_max_normal_product(max_normal_product)
133{
134 /* Nothing. */
135}
136
137template<typename Coordinate>
138void
140::epsilon(const Field epsilon)
141{
142 m_epsilon = epsilon;
143}
144
145template<typename Coordinate>
146template<typename Corners, typename Normals>
147void
149::doProjection(const std::tuple<Corners&, Corners&>& corners, const std::tuple<Normals&, Normals&>& normals)
150{
151 /* Try to obtain Φ(xᵢ) for each corner xᵢ of the preimage triangle.
152 * This means solving a linear system of equations
153 * Φ(xᵢ) = (1-α-β) y₀ + α y₁ + β y₂ = xᵢ + δ nᵢ
154 * or α (y₁ - y₀) + β (y₂ - y₀) - δ nᵢ = xᵢ - y₀
155 * to obtain the barycentric coordinates (α, β) of Φ(xᵢ) in the image
156 * triangle and the distance δ.
157 *
158 * In the matrix m corresponding to the system, only the third column and the
159 * right-hand side depend on i. The first two columns can be assembled before
160 * and reused.
161 */
162 using namespace ProjectionImplementation;
163 using std::get;
164 typedef Dune::FieldMatrix<Field, dim, dim> Matrix;
165 Matrix m;
166
167 const auto& origin = get<0>(corners);
168 const auto& origin_normals = get<0>(normals);
169 const auto& target = get<1>(corners);
170 const auto& target_normals = get<1>(normals);
171 auto& images = get<0>(m_images);
172 auto& success = get<0>(m_success);
173
174 /* directionsᵢ = (yᵢ - y₀) / ||yᵢ - y₀||
175 * These are the first to columns of the system matrix; the rescaling is done
176 * to ensure all columns have a comparable norm (the last has the normal with norm 1.
177 */
178 std::array<Coordinate, dim-1> directions;
179 std::array<Field, dim-1> scales;
180 /* estimator for the diameter of the target face */
181 Field scaleSum(0);
182 for (unsigned i = 0; i < dim-1; ++i) {
183 directions[i] = target[i+1] - target[0];
184 scales[i] = directions[i].infinity_norm();
185 directions[i] /= scales[i];
186 scaleSum += scales[i];
187 }
188
189 for (unsigned i = 0; i < dim-1; ++i) {
190 for (unsigned j = 0; j < dim; ++j) {
191 m[j][i] = directions[i][j];
192 }
193 }
194
195 m_projection_valid = true;
196 success.reset();
197
198 /* Now project xᵢ for each i */
199 for (unsigned i = 0; i < origin.size(); ++i) {
200 for (unsigned j = 0; j < dim; ++j)
201 m[j][dim-1] = origin_normals[i][j];
202
203 const Coordinate rhs = origin[i] - target[0];
204
205 try {
206 /* y = (α, β, δ) */
207 auto& y = images[i];
208 m.solve(y, rhs);
209 for (unsigned j = 0; j < dim-1; ++j)
210 y[j] /= scales[j];
211 /* Solving gave us -δ as the term is "-δ nᵢ". */
212 y[dim-1] *= Field(-1);
213
214 /* If the forward projection is too far in the wrong direction
215 * then this might result in artificial inverse projections or
216 * edge intersections. To prevent these wrong cases but not
217 * dismiss feasible intersections, the projection is dismissed
218 * if the forward projection is further than two times the
219 * approximate diameter of the image triangle.
220 */
221 if(y[dim-1] < -2*scaleSum) {
222 success.set(i,false);
223 m_projection_valid = false;
224 return;
225 }
226
227 const bool feasible = projectionFeasible(origin[i], origin_normals[i], y, target, target_normals);
228 success.set(i, feasible);
229 }
230 catch (const Dune::FMatrixError&) {
231 success.set(i, false);
232 m_projection_valid = false;
233 }
234 }
235}
236
237template<typename Coordinate>
238template<typename Corners, typename Normals>
239void
240Projection<Coordinate>
241::doInverseProjection(const std::tuple<Corners&, Corners&>& corners, const std::tuple<Normals&, Normals&>& normals)
242{
243 /* Try to obtain Φ⁻¹(yᵢ) for each corner yᵢ of the image triangle.
244 * Instead of solving the problem directly (which would lead to
245 * non-linear equations), we make use of the forward projection Φ
246 * which projects the preimage triangle on the plane spanned by the
247 * image triangle. The inverse projection is then given by finding
248 * the barycentric coordinates of yᵢ with respect to the triangle
249 * with the corners Φ(xᵢ). This way we only have to solve linear
250 * equations.
251 */
252
253 using namespace ProjectionImplementation;
254 using std::get;
255 typedef Dune::FieldMatrix<Field, dim-1, dim-1> Matrix;
256 typedef Dune::FieldVector<Field, dim-1> Vector;
257
258 /* The inverse projection can only be computed if the forward projection
259 * managed to project all xᵢ on the plane spanned by the yᵢ
260 */
261 if (!m_projection_valid) {
262 get<1>(m_success).reset();
263 return;
264 }
265
266 const auto& images = get<0>(m_images);
267 const auto& target_corners = get<1>(corners);
268 auto& preimages = get<1>(m_images);
269 auto& success = get<1>(m_success);
270
271 std::array<Coordinate, dim> v;
272 for (unsigned i = 0; i < dim-1; ++i) {
273 v[i] = interpolate(images[i+1], target_corners);
274 v[i] -= interpolate(images[0], target_corners);
275 }
276
277 Matrix m;
278 for (unsigned i = 0; i < dim-1; ++i) {
279 for (unsigned j = 0; j < dim-1; ++j) {
280 m[i][j] = v[i]*v[j];
281 }
282 }
283
284 for (unsigned i = 0; i < dim; ++i) {
285 /* Convert yᵢ to barycentric coordinates with respect to Φ(xⱼ) */
286 v[dim-1] = target_corners[i];
287 v[dim-1] -= interpolate(images[0], target_corners);
288
289 Vector rhs, z;
290 for (unsigned j = 0; j < dim-1; ++j)
291 rhs[j] = v[dim-1]*v[j];
292 m.solve(z, rhs);
293
294 for (unsigned j = 0; j < dim-1; ++j)
295 preimages[i][j] = z[j];
296
297 /* Calculate distance along normal direction */
298 const auto x = interpolate(z, get<0>(corners));
299 preimages[i][dim-1] = (x - target_corners[i]) * get<1>(normals)[i];
300
301 /* Check y_i lies inside the Φ(xⱼ) */
302 const bool feasible = projectionFeasible(target_corners[i], get<1>(normals)[i], preimages[i], get<0>(corners), get<0>(normals));
303 success.set(i, feasible);
304 }
305}
306
307template<typename Coordinate>
308template<typename Corners, typename Normals>
309void
310Projection<Coordinate>
311::doEdgeIntersection(const std::tuple<Corners&, Corners&>& corners, const std::tuple<Normals&, Normals&>& normals)
312{
313 using namespace ProjectionImplementation;
314 using std::get;
315
316 m_number_of_edge_intersections = 0;
317
318 /* There are no edge intersections for 2d, only for 3d */
319 if (dim != 3)
320 return;
321
322 /* There are no edge intersections
323 * - when the projection is invalid,
324 * - when the projected triangle lies fully in the target triangle,
325 * - or when the target triangle lies fully in the projected triangle.
326 */
327 if (!m_projection_valid || get<0>(m_success).all() || get<1>(m_success).all()) {
328 return;
329 }
330
331 const auto& images = get<0>(m_images);
332 const auto& ys = get<1>(corners);
333
334 /* Intersect line through Φ(xᵢ), Φ(xⱼ) with line through yₖ, yₗ:
335 We want α, β ∈ ℝ such that
336 Φ(xᵢ) + α (Φ(xⱼ) - Φ(xᵢ)) = yₖ + β (yₗ - yₖ)
337 or
338 α (Φ(xⱼ)-Φ(xᵢ)) + β (yₗ-yₖ) = yₖ-Φ(xᵢ)
339 To get a 2×2 system of equations, multiply with yₘ-y₀ for
340 m ∈ {1,̣̣2} which are linear indep. (and so the system is
341 equivalent to the original 3×2 system)
342 */
343 for (unsigned edgex = 0; edgex < dim; ++edgex) {
344 unsigned i, j;
345 std::tie(i, j) = edgeToCorners(edgex);
346
347 /* Both sides of edgex lie in the target triangle means no edge intersection */
348 if (get<0>(m_success)[i] && get<0>(m_success)[j])
349 continue;
350
351 const auto pxi = interpolate(images[i], ys);
352 const auto pxj = interpolate(images[j], ys);
353 const auto pxjpxi = pxj - pxi;
354
355 typedef Dune::FieldMatrix<Field, dim-1, dim-1> Matrix;
356 typedef Dune::FieldVector<Field, dim-1> Vector;
357
358 for (unsigned edgey = 0; edgey < dim; ++edgey) {
359 unsigned k, l;
360 std::tie(k, l) = edgeToCorners(edgey);
361
362 /* Both sides of edgey lie in the projected triangle means no edge intersection */
363 if (get<1>(m_success)[k] && get<1>(m_success)[l])
364 continue;
365
366 const auto ykyl = ys[k] - ys[l];
367 const auto ykpxi = ys[k] - pxi;
368
369 /* If edges are parallel then the intersection is already computed by vertex projections. */
370 bool parallel = true;
371 for (unsigned h=0; h<3; h++)
372 parallel &= std::abs(ykyl[(h+1)%3]*pxjpxi[(h+2)%3] - ykyl[(h+2)%3]*pxjpxi[(h+1)%3])<1e-14;
373 if (parallel)
374 continue;
375
376 Matrix mat;
377 Vector rhs, z;
378
379 for (unsigned m = 0; m < dim-1; ++m) {
380 const auto ym1y0 = ys[m+1] - ys[0];
381 mat[m][0] = pxjpxi * ym1y0;
382 mat[m][1] = ykyl * ym1y0;
383 rhs[m] = ykpxi * ym1y0;
384 }
385
386 try {
387 using std::isfinite;
388
389 mat.solve(z, rhs);
390
391 /* If solving the system gives a NaN, the edges are probably parallel. */
392 if (!isfinite(z[0]) || !isfinite(z[1]))
393 continue;
394
395 /* Filter out corner (pre)images. We only want "real" edge-edge intersections here. */
396 if (z[0] < m_epsilon || z[0] > Field(1) - m_epsilon
397 || z[1] < m_epsilon || z[1] > Field(1) - m_epsilon)
398 continue;
399
400 Coordinate local_x = corner<Coordinate, Field>(i);
401 local_x.axpy(z[0], corner<Coordinate, Field>(j) - corner<Coordinate, Field>(i));
402 Coordinate local_y = corner<Coordinate, Field>(k);
403 local_y.axpy(z[1], corner<Coordinate, Field>(l) - corner<Coordinate, Field>(k));
404
405 /* Make sure the intersection is in the triangle. */
406 if (!inside(local_x, m_epsilon) || !inside(local_y, m_epsilon))
407 continue;
408
409 /* Make sure the intersection respects overlap. */
410 auto xy = interpolate(local_x, get<0>(corners));
411 xy -= interpolate(local_y, get<1>(corners));
412 const auto nx = interpolate_unit_normals(local_x, get<0>(normals));
413 const auto ny = interpolate_unit_normals(local_y, get<1>(normals));
414 local_x[dim-1] = -(xy*nx);
415 local_y[dim-1] = xy*ny;
416
417 if (local_x[dim-1] < -m_overlap-m_epsilon || local_y[dim-1] < -m_overlap-m_epsilon)
418 continue;
419
420 /* Normals should be opposing. */
421 if (nx*ny > m_max_normal_product + m_epsilon)
422 continue;
423
424 /* Intersection is feasible. Store it. */
425 auto& intersection = m_edge_intersections[m_number_of_edge_intersections++];
426 intersection = { {{edgex, edgey}}, {{local_x, local_y}} };
427 }
428 catch(const Dune::FMatrixError&) {
429 /* Edges might be parallel, ignore and continue with next edge */
430 }
431 }
432 }
433}
434
435template<typename Coordinate>
436template<typename Corners, typename Normals>
437bool Projection<Coordinate>
438::projectionFeasible(const Coordinate& x, const Coordinate& nx, const Coordinate& px, const Corners& corners, const Normals& normals) const
439{
440 using namespace ProjectionImplementation;
441
442 /* Image must be within simplex. */
443 if (!inside(px, m_epsilon))
444 return false;
445
446 /* Distance along normal must not be smaller than -overlap. */
447 if (px[dim-1] < -m_overlap-m_epsilon)
448 return false;
449
450 /* Distance along normal at image must not be smaller than -overlap. */
451 auto xmy = x;
452 xmy -= interpolate(px, corners);
453 const auto n = interpolate_unit_normals(px, normals);
454 const auto d = xmy * n;
455 if (d < -m_overlap-m_epsilon)
456 return false;
457
458 /* Normals at x and Φ(x) are opposing. */
459 if (nx * n > m_max_normal_product + m_epsilon)
460 return false;
461
462 /* Okay, projection is feasible. */
463 return true;
464}
465
466template<typename Coordinate>
467template<typename Corners, typename Normals>
469::project(const std::tuple<Corners&, Corners&>& corners, const std::tuple<Normals&, Normals&>& normals)
470{
471 doProjection(corners, normals);
472 doInverseProjection(corners, normals);
473 doEdgeIntersection(corners, normals);
474}
475
476} /* namespace GridGlue */
477} /* namespace Dune */
Projection of a line (triangle) on another line (triangle).
Definition: projection.hh:21
Coordinate::field_type Field
Scalar type.
Definition: projection.hh:61
Projection(const Field overlap=Field(0), const Field max_normal_product=Field(-0.1))
Definition: projection_impl.hh:130
void epsilon(const Field epsilon)
Set epsilon used for floating-point comparisons.
Definition: projection_impl.hh:140
void project(const std::tuple< Corners &, Corners & > &corners, const std::tuple< Normals &, Normals & > &normals)
Do the actual projection.
Definition: projection_impl.hh:469
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden & Uni Heidelberg  |  generated with Hugo v0.111.3 (Apr 3, 22:46, 2025)