DUNE-FEM (unstable)

Dune::PolynomialBasis< Eval, CM, D, R > Class Template Reference

#include <dune/localfunctions/utility/polynomialbasis.hh>

Public Member Functions

void evaluateFunction (const typename Traits::DomainType &x, std::vector< typename Traits::RangeType > &out) const
 Evaluate all shape functions.
 
void evaluateJacobian (const typename Traits::DomainType &x, std::vector< typename Traits::JacobianType > &out) const
 Evaluate Jacobian of all shape functions.
 
void evaluateHessian (const typename Traits::DomainType &x, std::vector< HessianType > &out) const
 Evaluate Jacobian of all shape functions.
 
void partial (const std::array< unsigned int, dimension > &order, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
 Evaluate partial derivatives of all shape functions.
 

Detailed Description

template<class Eval, class CM, class D = double, class R = double>
class Dune::PolynomialBasis< Eval, CM, D, R >

This is the basis class for a ''polynomial'' basis, i.e., a basis consisting of linear combiniations of a underlying second basis set. Examples are standard polynomials where the underlying basis is given by the MonomialBasis class. The basis evaluation is given by the matrix vector multiplication between the coefficient matrix and the vector filled by evaluating the underlying basis set. This class is constructed using a reference of the underlying basis and the coefficient matrix. A specialization holding an instance of the coefficient matrix is provided by the class template< class Eval, class CM = SparseCoeffMatrix<typename Eval::Field,Eval::dimRange> > class PolynomialBasisWithMatrix;

Template Parameters
BBasis set with static const int dimension -> dimension of reference element typedef DomainVector -> coordinates in reference element int size(int order) const -> number of basis functions void evaluate( order, x, val ) const int order DomainVector x Container val
CMstorage for coefficience with typedef Field -> field of coefficience static const int dimRange -> coeficience are of type FieldMatrix<Field,dimRange,dimRange> void mult( val, y ) Container val std::vector<RangeVector> y
Containeraccess to basis functions through forward iterator typedef value_type typedef const_iterator const_iterator begin()

The documentation for this class was generated from the following file:
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 20, 23:30, 2024)