DUNE-ACFEM (2.5.1)

probleminterface.hh
1#ifndef _DUNE_ACFEM_POISSON_PROBLEMINTERFACE_HH_
2#define _DUNE_ACFEM_POISSON_PROBLEMINTERFACE_HH_
3
4#include <cassert>
5#include <cmath>
6
7#include <dune/common/exceptions.hh>
8#include <dune/fem/function/common/function.hh>
9#include "timeview.hh"
10
11namespace Dune {
12
13 namespace ACFem {
14
62 template <class FunctionSpace>
64 {
65 public:
66 // type of function space
67 typedef FunctionSpace FunctionSpaceType;
68
69 enum { dimRange = FunctionSpaceType::dimRange };
70 enum { dimDomain = FunctionSpaceType::dimDomain };
71
72 typedef typename FunctionSpaceType::RangeFieldType RangeFieldType;
73
74 typedef typename FunctionSpaceType::RangeType RangeType;
75 typedef typename FunctionSpaceType::DomainType DomainType;
76
77 typedef typename FunctionSpaceType::JacobianRangeType JacobianRangeType;
78 typedef typename FunctionSpaceType::HessianRangeType HessianRangeType;
79
80 enum OperatorParts {
81 SecondOrderCoefficient,
82 FirstOrderCoefficient,
83 ZeroOrderCoefficient,
84 RightHandSide,
85 DirichletBoundary,
86 NeumannBoundary,
87 RobinBoundary,
88 ExactSolution,
89 };
90 typedef enum OperatorParts OperatorPartsType;
91
92 virtual ~ProblemInterface() {}
93
104 virtual bool has(OperatorPartsType what) const
105 {
106 switch (what) {
107 case SecondOrderCoefficient: return true;
108 case FirstOrderCoefficient: return false;
109 case ZeroOrderCoefficient: return false;
110 case RightHandSide: return true;
111 case DirichletBoundary: return true;
112 case NeumannBoundary: return false;
113 case RobinBoundary: return false;
114 case ExactSolution: return true;
115 }
116 return false;
117 }
118
120 virtual void f(const DomainType& x,
121 RangeType& value) const
122 {
123 value = 0;
124 }
125
127 virtual void u(const DomainType& x,
128 RangeType& value) const
129 {
130 value = 0;
131 }
132
134 virtual void uJacobian(const DomainType& x,
135 JacobianRangeType& value) const
136 {
137 value = 0;
138 }
139
150 virtual bool isDirichletSegment(const int bndId, const DomainType& center) const {
151 return true;
152 }
153
165 virtual bool isNeumannSegment(const int bndId, const DomainType& center) const {
166 return false;
167 }
168
180 virtual bool isRobinSegment(const int bndId, const DomainType& center) const {
181 return false;
182 }
183
190 virtual void dirichletData(const DomainType& x,
191 RangeType& value) const
192 {
193 u(x, value);
194 }
195
203 virtual void neumannData(const DomainType& x,
204 RangeType& value) const
205 {
206 value = 0;
207 }
208
224 virtual void robinData(const DomainType& x,
225 const RangeType& u,
226 RangeType& value) const
227 {
228 value = 0;
229 }
230
231
232
244 virtual void secondOrderCoefficient(const DomainType& x,
245 const JacobianRangeType& gradient,
246 JacobianRangeType& result) const
247 {
248 // default implementation is Laplace
249 result = gradient ;
250 }
251
265 virtual void secondOrderCoefficient(const DomainType &x,
266 const JacobianRangeType &Du,
267 const HessianRangeType &D2u,
268 RangeType &result) const
269 {
270 // default implementation is Laplace
271 for (int i = 0; i < dimRange; ++i) {
272 result[i] = 0;
273 for (int j = 0; j < dimDomain; ++j) {
274 result[i] -= D2u[i][j][j];
275 }
276 }
277 }
278
293 virtual void firstOrderCoefficient(const DomainType& x,
294 const RangeType& u,
295 const JacobianRangeType& Du,
296 RangeType& result) const
297 {
298 result = 0;
299 }
300
301
309 virtual void zeroOrderCoefficient(const DomainType& x,
310 const RangeType& u,
311 RangeType& result) const
312 {
313 result = 0;
314 }
315
316 enum FunctionId { exact, rhs, dirichlet, neumann };
317
318 template <FunctionId id>
319 class FunctionWrapper : public Dune::Fem::Function<FunctionSpaceType, FunctionWrapper<id> >
320 {
321 const ProblemInterface& impl_;
322
323 public:
324 FunctionWrapper(const ProblemInterface& impl)
325 : impl_(impl)
326 {
327 //std::cout << "ctor impl: " << impl_ << " " << &impl_ << " " << this << std::endl;
328 }
329
331 void evaluate(const DomainType& x, RangeType& ret) const
332 {
333 //std::cout << "eval impl: " << impl_ << " " << &impl_ << " " << this << std::endl;
334 switch (id) {
335 case exact: // call exact solution of implementation
336 impl_.u(x, ret);
337 break;
338 case rhs: // call right hand side of implementation
339 impl_.f(x, ret);
340 break;
341 case dirichlet: // call dirichlet boudary data of implementation
342 impl_.dirichletData(x, ret);
343 break;
344 case neumann: // call neumann boundary data of implementation
345 impl_.neumannData(x, ret);
346 break;
347 default:
348 DUNE_THROW(Dune::NotImplemented,"FunctionId not implemented");
349 break;
350 }
351 }
352
354 void jacobian(const DomainType& x, JacobianRangeType& jac) const
355 {
356 switch (id) {
357 case exact:
358 impl_.uJacobian(x, jac);
359 break;
360 default:
361 DUNE_THROW(Dune::NotImplemented,"Jacobian for FunctionId not implemented");
362 break;
363 }
364 }
365 };
366
367 typedef FunctionWrapper<exact> ExactSolutionType;
368 // return Fem::Function for exact solution
369 ExactSolutionType exactSolution() const
370 {
371 return ExactSolutionType(*this);
372 }
373
374 typedef FunctionWrapper<rhs> RightHandSideType;
375 // return Fem::Function for right hand side
376 RightHandSideType rightHandSide() const
377 {
378 return RightHandSideType(*this);
379 }
380
381 typedef FunctionWrapper<dirichlet> DirichletBoundaryType;
382 // return Fem::Function for Dirichlet boundary values
383 DirichletBoundaryType dirichletBoundary() const
384 {
385 return DirichletBoundaryType(*this);
386 }
387
388 typedef FunctionWrapper<neumann> NeumannBoundaryType;
389 // return Fem::Function for Neumann boundary values
390 NeumannBoundaryType neumannBoundary() const
391 {
392 return NeumannBoundaryType(*this);
393 }
394 };
395
400 template <class FunctionSpace, class TimeProvider>
402 : public ProblemInterface<FunctionSpace>
403 {
406 public:
407 typedef FunctionSpace FunctionSpaceType;
408 typedef TimeProvider TimeProviderType;
410
412 TransientProblemInterface(const TimeProviderType& timeProvider, double theta = 0.0)
413 : timeView_(timeProvider, theta)
414 {}
415
416 typedef typename BaseType::ExactSolutionType InitialValueType;
417
418 // return Fem::Function for initial
419 InitialValueType initialValue() const
420 {
421 return InitialValueType(*this);
422 }
423
425 double time() const
426 {
427 return timeView_.time();
428 }
429
431 double deltaT() const
432 {
433 return timeView_.deltaT() ;
434 }
435
437 const TimeViewType& timeView() const
438 {
439 return timeView_;
440 }
441
444 {
445 return timeView_;
446 }
447 protected:
448 TimeViewType timeView_;
449 };
450
452
454
455 } // ACFem::
456
457} // Dune::
458
459#endif // #ifndef ELLIPTC_PROBLEMINTERFACE_HH
460
Problem interface which describes a second order elliptic boundary problem:
Definition: probleminterface.hh:64
problem interface class for time dependent problem descriptions, i.e.
Definition: probleminterface.hh:403
virtual void secondOrderCoefficient(const DomainType &x, const JacobianRangeType &Du, const HessianRangeType &D2u, RangeType &result) const
This method has to implement the second order term for the point-wise operator.
Definition: probleminterface.hh:265
virtual void uJacobian(const DomainType &x, JacobianRangeType &value) const
the jacobian of the exact solution (default = 0)
Definition: probleminterface.hh:134
double deltaT() const
return current time step size ( )
Definition: probleminterface.hh:431
const TimeViewType & timeView() const
return reference to Problem's time provider
Definition: probleminterface.hh:437
virtual void secondOrderCoefficient(const DomainType &x, const JacobianRangeType &gradient, JacobianRangeType &result) const
This method has to implement the second order term for the weak formulation, it needs to compute.
Definition: probleminterface.hh:244
virtual void firstOrderCoefficient(const DomainType &x, const RangeType &u, const JacobianRangeType &Du, RangeType &result) const
First order term with derivative on u.
Definition: probleminterface.hh:293
TimeViewType & timeView()
return reference to Problem's time provider
Definition: probleminterface.hh:443
void evaluate(const DomainType &x, RangeType &ret) const
evaluate function
Definition: probleminterface.hh:331
virtual bool isDirichletSegment(const int bndId, const DomainType &center) const
Classification of the kind of boundary conditions which applies to a boundary segment with the given ...
Definition: probleminterface.hh:150
virtual bool isRobinSegment(const int bndId, const DomainType &center) const
Classification of the kind of boundary conditions which applies to a boundary segment with the given ...
Definition: probleminterface.hh:180
TransientProblemInterface(const TimeProviderType &timeProvider, double theta=0.0)
constructor taking time provider
Definition: probleminterface.hh:412
virtual void dirichletData(const DomainType &x, RangeType &value) const
The Dirichlet boundary data.
Definition: probleminterface.hh:190
virtual void robinData(const DomainType &x, const RangeType &u, RangeType &value) const
The Robin boundary data.
Definition: probleminterface.hh:224
virtual void neumannData(const DomainType &x, RangeType &value) const
The Neumann boundary data.
Definition: probleminterface.hh:203
void jacobian(const DomainType &x, JacobianRangeType &jac) const
jacobian of the function
Definition: probleminterface.hh:354
virtual void zeroOrderCoefficient(const DomainType &x, const RangeType &u, RangeType &result) const
Zero order coefficient.
Definition: probleminterface.hh:309
virtual void f(const DomainType &x, RangeType &value) const
the right hand side data (default = 0)
Definition: probleminterface.hh:120
virtual bool has(OperatorPartsType what) const
May be used for optimizations during assembly.
Definition: probleminterface.hh:104
double time() const
return current simulation time
Definition: probleminterface.hh:425
virtual bool isNeumannSegment(const int bndId, const DomainType &center) const
Classification of the kind of boundary conditions which applies to a boundary segment with the given ...
Definition: probleminterface.hh:165
virtual void u(const DomainType &x, RangeType &value) const
the exact solution (default = 0)
Definition: probleminterface.hh:127
LocalFunctionWrapper< LocalGradientAdapter< GridFunction >, typename GridFunction::GridPartType > gradient(const Fem::Function< typename GridFunction::FunctionSpaceType, GridFunction > &f_, const std::string &name="")
Take the gradient of a given function.
Definition: basicfunctions.hh:145
double time() const
Return the absolute point in time.
Definition: timeview.hh:41
double deltaT() const
Return the current time step size.
Definition: timeview.hh:44
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 12, 23:30, 2024)