DUNE-ACFEM (2.5.1)
probleminterface.hh
Problem interface which describes a second order elliptic boundary problem:
Definition: probleminterface.hh:64
problem interface class for time dependent problem descriptions, i.e.
Definition: probleminterface.hh:403
virtual void secondOrderCoefficient(const DomainType &x, const JacobianRangeType &Du, const HessianRangeType &D2u, RangeType &result) const
This method has to implement the second order term for the point-wise operator.
Definition: probleminterface.hh:265
virtual void uJacobian(const DomainType &x, JacobianRangeType &value) const
the jacobian of the exact solution (default = 0)
Definition: probleminterface.hh:134
double deltaT() const
return current time step size ( )
Definition: probleminterface.hh:431
const TimeViewType & timeView() const
return reference to Problem's time provider
Definition: probleminterface.hh:437
virtual void secondOrderCoefficient(const DomainType &x, const JacobianRangeType &gradient, JacobianRangeType &result) const
This method has to implement the second order term for the weak formulation, it needs to compute.
Definition: probleminterface.hh:244
virtual void firstOrderCoefficient(const DomainType &x, const RangeType &u, const JacobianRangeType &Du, RangeType &result) const
First order term with derivative on u.
Definition: probleminterface.hh:293
TimeViewType & timeView()
return reference to Problem's time provider
Definition: probleminterface.hh:443
void evaluate(const DomainType &x, RangeType &ret) const
evaluate function
Definition: probleminterface.hh:331
virtual bool isDirichletSegment(const int bndId, const DomainType ¢er) const
Classification of the kind of boundary conditions which applies to a boundary segment with the given ...
Definition: probleminterface.hh:150
virtual bool isRobinSegment(const int bndId, const DomainType ¢er) const
Classification of the kind of boundary conditions which applies to a boundary segment with the given ...
Definition: probleminterface.hh:180
TransientProblemInterface(const TimeProviderType &timeProvider, double theta=0.0)
constructor taking time provider
Definition: probleminterface.hh:412
virtual void dirichletData(const DomainType &x, RangeType &value) const
The Dirichlet boundary data.
Definition: probleminterface.hh:190
virtual void robinData(const DomainType &x, const RangeType &u, RangeType &value) const
The Robin boundary data.
Definition: probleminterface.hh:224
virtual void neumannData(const DomainType &x, RangeType &value) const
The Neumann boundary data.
Definition: probleminterface.hh:203
void jacobian(const DomainType &x, JacobianRangeType &jac) const
jacobian of the function
Definition: probleminterface.hh:354
virtual void zeroOrderCoefficient(const DomainType &x, const RangeType &u, RangeType &result) const
Zero order coefficient.
Definition: probleminterface.hh:309
virtual void f(const DomainType &x, RangeType &value) const
the right hand side data (default = 0)
Definition: probleminterface.hh:120
virtual bool has(OperatorPartsType what) const
May be used for optimizations during assembly.
Definition: probleminterface.hh:104
double time() const
return current simulation time
Definition: probleminterface.hh:425
virtual bool isNeumannSegment(const int bndId, const DomainType ¢er) const
Classification of the kind of boundary conditions which applies to a boundary segment with the given ...
Definition: probleminterface.hh:165
virtual void u(const DomainType &x, RangeType &value) const
the exact solution (default = 0)
Definition: probleminterface.hh:127
LocalFunctionWrapper< LocalGradientAdapter< GridFunction >, typename GridFunction::GridPartType > gradient(const Fem::Function< typename GridFunction::FunctionSpaceType, GridFunction > &f_, const std::string &name="")
Take the gradient of a given function.
Definition: basicfunctions.hh:145
double time() const
Return the absolute point in time.
Definition: timeview.hh:41
double deltaT() const
Return the current time step size.
Definition: timeview.hh:44
|
Legal Statements / Impressum |
Hosted by TU Dresden |
generated with Hugo v0.111.3
(Nov 12, 23:30, 2024)