DUNE-ACFEM (unstable)

plaplacianmodel.hh
1#ifndef __DUNE_ACFEM_MODELS_MODULES_PLAPLACIANMODEL_HH__
2#define __DUNE_ACFEM_MODELS_MODULES_PLAPLACIANMODEL_HH__
3
4#include "../../common/literals.hh"
5#include "../../expressions/terminal.hh"
6#include "../../tensors/tensor.hh"
7
8#include "../modelbase.hh"
9#include "../expressiontraits.hh"
10
11namespace Dune {
12
13 namespace ACFem::PDEModel {
14
15 using namespace Literals;
16
57 template<class FunctionSpace, class PField>
59 : public ModelBase<FunctionSpace>
60 , public Expressions::SelfExpression<P_LaplacianModel<FunctionSpace, PField> >
61 , public MPL::UniqueTags<ConditionalType<ExpressionTraits<PField>::isVolatile, VolatileExpression, void>,
62 ConditionalType<IsConstantExprArg<PField>::value, ConstantExpression, void>,
63 ConditionalType<IsTypedValue<PField>::value, TypedValueExpression, void>,
64 SemiPositiveExpression,
65 SymmetricModel>
66 {
69 public:
70 using typename BaseType::DomainType;
71 using typename BaseType::RangeFieldType;
72 using typename BaseType::RangeType;
73 using typename BaseType::JacobianRangeType;
74 using typename BaseType::HessianRangeType;
75 using PFieldType = PField;
76 using ExponentType = std::decay_t<decltype(std::declval<PFieldType>() - 2_f)>;
79
80 // Interface methods that need to be reimplemented
81
82 P_LaplacianModel(PFieldType&& exponent, const std::string& name = "")
83 : exponent_(exponent - 2_f),
84 name_(name == "" ? "(|grad(U)|^" + toString(exponent_) + " grad(U))" : name)
85 {}
86
87 std::string name() const
88 {
89 return name_;
90 }
91
93 auto flux(const JacobianRangeType& jacobian) const
94 {
95 const auto factor = std::pow(jacobian.frobenius_norm2(), 0.5*exponent_);
96
97 auto flux = jacobian;
98 return flux *= factor;
99 }
100
102 auto linearizedFlux(const JacobianRangeType& DuBar,
103 const JacobianRangeType& jacobian) const
104 {
105 const auto norm = DuBar.frobenius_norm2();
106
107 auto flux = jacobian;
108 flux *= std::pow(norm, 0.5 * exponent_);
109
110 auto tmp = DuBar;
111
112 auto factor = exponent_*std::pow(norm, 0.5*(exponent_ - 1.));
113 auto frobscp = contractInner<2>(DuBar, jacobian);
114
115 tmp *= factor * frobscp;
116 return flux += tmp;
117 }
118
120 auto fluxDivergence(const JacobianRangeType& jacobian,
121 const HessianRangeType& hessian) const
122 {
123 const auto norm = jacobian.frobenius_norm2();
124 const auto factor1 = std::pow(norm, 0.5*exponent_ - 1.);
125 const auto factor2 = factor1 * norm;
126
127 JacobianRangeType jac_hess = 0;
128
129 for (int alpha = 0; alpha < dimRange; ++alpha) {
130 DomainType tmp;
131 hessian[alpha].mv(jacobian[alpha], tmp);
132 jac_hess[alpha] += tmp;
133 }
134 jac_hess *= factor1 * exponent_;
135
136 RangeType result;
137 for (int beta = 0; beta < dimRange; ++beta) {
138 RangeFieldType laplacian = 0;
139 for (int i = 0; i < dimDomain; ++i) {
140 laplacian += hessian[beta][i][i];
141 }
142 result[beta] = -factor2 * laplacian; // weighted Laplacian
143 result[beta] -= (jac_hess[beta] * jacobian[beta]);
144 }
145 return result;
146 }
147
148 const ExponentType& exponent() const { return exponent_; }
149
150 constexpr auto p() const { return exponent_ + 2_f; }
151
152 protected:
153 ExponentType exponent_;
154 std::string name_;
155 };
156
158
160
175 template<class Object, class PField>
176 constexpr auto p_LaplacianModel(PField&& p, const Object& object, const std::string& name = "")
177 {
179 return expressionClosure(ModelType(std::forward<PField>(p), name));
180 }
181
183
185
186 } // namespace ACFem::PDEModel
187
188 namespace ACFem {
189
191
192 }
193
194} //Namespace Dune
195
196
197#endif // __DUNE_ACFEM_MODELS_MODULES_PLAPLACIANMODEL_HH__
The p-Laplacian-model.
Definition: plaplacianmodel.hh:66
constexpr decltype(auto) expressionClosure(T &&t)
Do-nothing default implementation for pathologic cases.
Definition: interface.hh:93
auto fluxDivergence(const JacobianRangeType &jacobian, const HessianRangeType &hessian) const
Compute the point-wise value of the flux-part of the operator, meaning the part of the differential o...
Definition: plaplacianmodel.hh:120
constexpr auto p_LaplacianModel(PField &&p, const Object &object, const std::string &name="")
Generate Model for a (weak, of course) p-Laplacian.
Definition: plaplacianmodel.hh:176
auto linearizedFlux(const JacobianRangeType &DuBar, const JacobianRangeType &jacobian) const
Evaluate the linearized flux in local coordinates.
Definition: plaplacianmodel.hh:102
auto flux(const JacobianRangeType &jacobian) const
Evaluate in local coordinates.
Definition: plaplacianmodel.hh:93
auto pow(T1 &&t1, T2 &&t2)
Power operations with scalar exponents are promoted to component-wise power operations by multiplying...
Definition: expressions.hh:525
Terminals may derive from this class to express that they are expressions.
Definition: terminal.hh:25
A structure defining some basic default types and methods.
Definition: modelbase.hh:41
typename FunctionSpaceType::JacobianRangeType JacobianRangeType
The type returned by classifyBoundary().
Definition: modelbase.hh:63
typename FunctionSpaceType::DomainType DomainType
The type returned by classifyBoundary().
Definition: modelbase.hh:61
typename FunctionSpaceType::RangeType RangeType
The type returned by classifyBoundary().
Definition: modelbase.hh:62
HessianRangeSelector< FunctionSpaceType > HessianRangeType
The type returned by classifyBoundary().
Definition: modelbase.hh:65
static constexpr int dimRange
The type returned by classifyBoundary().
Definition: modelbase.hh:86
typename FunctionSpaceType::RangeFieldType RangeFieldType
The type returned by classifyBoundary().
Definition: modelbase.hh:67
static constexpr int dimDomain
The type returned by classifyBoundary().
Definition: modelbase.hh:85
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 31, 23:31, 2024)