DUNE-ACFEM (unstable)

Dune::ACFem::PDEModel::GradientModel< FunctionSpace > Class Template Reference

A gradient model, for example to implement gradient constraints. More...

#include <dune/acfem/models/modules/gradientmodel.hh>

+ Collaboration diagram for Dune::ACFem::PDEModel::GradientModel< FunctionSpace >:

Public Member Functions

auto linearizedFlux (const DomainRangeType &value) const
 The linearized source term as function of local coordinates. More...
 
template<class Intersection >
auto classifyBoundary (const Intersection &intersection) const
 Bind to the given intersection and classify the components w.r.t. More...
 

Static Public Attributes

static constexpr int rangeDimRange
 

FunctionSpaceTypes

Forward some basic type from the supplied function-spaces to the model class.

Note that FunctionSpace is defined as a shortcut for RangeFunctionSpace in order to simplify the common case DomainFunctionSpace == RangeFunctionSpace.

void bind (const Entity &entity)
 Bind to the given entity. More...
 
void unbind ()
 Unbind from the previously bound entity. More...
 
auto classifyBoundary (const Intersection &intersection)
 Bind to the given intersection and classify the components w.r.t. More...
 
using HessianRangeSelector = typename std::conditional< std::is_convertible< typename FunctionSpace::RangeType, typename FunctionSpace::HessianRangeType >::value, Fem::ExplicitFieldVector< typename FunctionSpace::HessianRangeType::value_type, FunctionSpace::dimRange >, typename FunctionSpace::HessianRangeType >::type
 The type returned by classifyBoundary().
 
using RangeFunctionSpaceType = Fem::ToNewDimRangeFunctionSpace< FunctionSpace, FunctionSpace::dimDomain >::Type
 The type returned by classifyBoundary().
 
using DomainFunctionSpaceType = FunctionSpace
 The type returned by classifyBoundary().
 
using FunctionSpaceType = RangeFunctionSpaceType
 The type returned by classifyBoundary().
 
using RangeType = typename FunctionSpaceType::RangeType
 The type returned by classifyBoundary().
 
using JacobianRangeType = typename FunctionSpaceType::JacobianRangeType
 The type returned by classifyBoundary().
 
using HessianRangeType = HessianRangeSelector< FunctionSpaceType >
 The type returned by classifyBoundary().
 
using DomainFieldType = typename FunctionSpaceType::DomainFieldType
 The type returned by classifyBoundary().
 
using RangeFieldType = typename FunctionSpaceType::RangeFieldType
 The type returned by classifyBoundary().
 
using DomainDomainType = typename DomainFunctionSpaceType::DomainType
 The type returned by classifyBoundary().
 
using DomainHessianRangeType = HessianRangeSelector< DomainFunctionSpaceType >
 The type returned by classifyBoundary().
 
using DomainDomainFieldType = typename DomainFunctionSpaceType::DomainFieldType
 The type returned by classifyBoundary().
 
using DomainRangeFieldType = typename DomainFunctionSpaceType::RangeFieldType
 The type returned by classifyBoundary().
 
using RangeDomainType = typename RangeFunctionSpaceType::DomainType
 The type returned by classifyBoundary().
 
using RangeHessianRangeType = HessianRangeSelector< RangeFunctionSpaceType >
 The type returned by classifyBoundary().
 
using RangeDomainFieldType = typename RangeFunctionSpaceType::DomainFieldType
 The type returned by classifyBoundary().
 
using RangeRangeFieldType = typename RangeFunctionSpaceType::RangeFieldType
 The type returned by classifyBoundary().
 
using BoundaryConditionsType = std::pair< bool, std::bitset< dimRange > >
 The type returned by classifyBoundary().
 
static constexpr int dimDomain
 The type returned by classifyBoundary().
 
static constexpr int dimRange
 The type returned by classifyBoundary().
 
static constexpr int domainDimDomain
 The type returned by classifyBoundary().
 
static constexpr int domainDimRange
 
static constexpr int rangeDimDomain
 The type returned by classifyBoundary().
 

Detailed Description

template<class FunctionSpace>
class Dune::ACFem::PDEModel::GradientModel< FunctionSpace >

A gradient model, for example to implement gradient constraints.

In contrast to the GradientLoadModel which adds the gradient of a given function as load-vector, this model implements the right hand side of the following equation:

\[ \int_\Omega \nabla\phi \cdot \psi = -\int_\Omega \phi \nabla\cdot\psi + \int_{\partial\Omega} \phi\psi\cdot\nu \]

where \(\psi\) is a dimDomain valued test-function and \(\phi\) is a scalar ansatz-function and \(\nu\) the outer normal.

Member Function Documentation

◆ bind()

void Dune::ACFem::ModelBase< FunctionSpace , Fem::ToNewDimRangeFunctionSpace< FunctionSpace, FunctionSpace::dimDomain >::Type >::bind ( const Entity &  entity)
inlineinherited

Bind to the given entity.

Parameters
[in]entityThe entity to bind to.
Warning
Calling any other method without first binding the model results in undefined behaviour.
Models needing this method need to reimplement it. This is just here to obey the "bindable" interface of Dune::Fem.

◆ classifyBoundary()

auto Dune::ACFem::ModelBase< FunctionSpace , Fem::ToNewDimRangeFunctionSpace< FunctionSpace, FunctionSpace::dimDomain >::Type >::classifyBoundary ( const Intersection &  intersection)
inlineinherited

Bind to the given intersection and classify the components w.r.t.

to the kind of applicable boundary conditions.

Warning
Note that prior to calling this function the model has to be bound to the inside entity of the given intersection. Failing to do so generates undefined behaviour.
The result of calling the other boundary related methods without binding to an intersection is undefined.
If RESULT.first is false, then the result of calling any of the other boundary related functions is undefined. Philosophically, they should return 0 in this case, but in order to have decent performance they give a damn and just don't care.
If RESULT.first is true, then still you cannot rely on user-friendly behaviour:
  • only if the respective bit of RESULT.second is set to 1, then the Dirichlet value in this compoment is well-defined.
  • only if the respective bit of RESULT.second is set to 0, then the Robin value in this component is well defined.
Parameters
[in]intersectionThe intersection to bind to.
Returns
A tuple. First component is a bool which is true iff any of the boundary related data functions would result in non trivial results. Second component is a bitset of size dimRange which is true if the given component of the system is subject to Dirichlet boundary conditions and false if it is subject to Robin or Neumann boundary conditions. If first is false then the contents of the bitset is undefined.

◆ unbind()

void Dune::ACFem::ModelBase< FunctionSpace , Fem::ToNewDimRangeFunctionSpace< FunctionSpace, FunctionSpace::dimDomain >::Type >::unbind ( )
inlineinherited

Unbind from the previously bound entity.

Warning
Calling this method on an unbound model may cause undefined behaviour.
Models needing this method need to reimplement it. This is just here to obey the "bindable" interface of Dune::Fem.

Member Data Documentation

◆ domainDimRange

constexpr int Dune::ACFem::ModelBase< FunctionSpace , Fem::ToNewDimRangeFunctionSpace< FunctionSpace, FunctionSpace::dimDomain >::Type >::domainDimRange
staticconstexprinherited

◆ rangeDimRange

template<class FunctionSpace >
constexpr int Dune::ACFem::ModelBase< DomainFunctionSpace, RangeFunctionSpace >::rangeDimRange
staticconstexpr

The documentation for this class was generated from the following file:
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Jan 3, 23:40, 2025)