12#include <initializer_list>
21#include <dune/common/matrixconcepts.hh>
30 class ColumnVectorView
34 using value_type =
typename M::value_type;
35 using size_type =
typename M::size_type;
37 constexpr ColumnVectorView(M& matrix, size_type col) :
42 constexpr size_type N ()
const {
46 template<
class M_ = M,
47 std::enable_if_t<std::is_same_v<M_,M> and not std::is_const_v<M_>,
int> = 0>
48 constexpr value_type& operator[] (size_type row) {
49 return matrix_[row][col_];
52 constexpr const value_type& operator[] (size_type row)
const {
53 return matrix_[row][col_];
64 struct FieldTraits< Impl::ColumnVectorView<M> >
66 using field_type =
typename FieldTraits<M>::field_type;
67 using real_type =
typename FieldTraits<M>::real_type;
81 template<
class K,
int ROWS,
int COLS = ROWS >
class FieldMatrix;
84 template<
class K,
int ROWS,
int COLS >
85 struct DenseMatVecTraits< FieldMatrix<K,ROWS,COLS> >
87 typedef FieldMatrix<K,ROWS,COLS> derived_type;
90 typedef FieldVector<K,COLS> row_type;
92 typedef row_type &row_reference;
93 typedef const row_type &const_row_reference;
95 typedef std::array<row_type,ROWS> container_type;
97 typedef typename container_type::size_type size_type;
100 template<
class K,
int ROWS,
int COLS >
101 struct FieldTraits< FieldMatrix<K,ROWS,COLS> >
103 typedef typename FieldTraits<K>::field_type field_type;
104 typedef typename FieldTraits<K>::real_type real_type;
115 template<
class K,
int ROWS,
int COLS>
118 std::array< FieldVector<K,COLS>, ROWS > _data;
123 constexpr static int rows = ROWS;
125 constexpr static int cols = COLS;
141 assert(l.size() ==
rows);
142 std::copy_n(l.begin(),
std::min(
static_cast<std::size_t
>(ROWS),
148 typename = std::enable_if_t<HasDenseMatrixAssigner<FieldMatrix, T>::value>>
154 using Base::operator=;
168 template <
typename T,
int rows,
int cols>
175 for(
int i = 0; i < ROWS; ++i )
176 for(
int j = 0; j < COLS; ++j )
177 AT[j][i] = (*
this)[i][j];
182 template <
class OtherScalar>
188 for (size_type i = 0; i < ROWS; ++i)
189 for (size_type j = 0; j < COLS; ++j)
190 result[i][j] = matrixA[i][j] + matrixB[i][j];
196 template <
class OtherScalar>
202 for (size_type i = 0; i < ROWS; ++i)
203 for (size_type j = 0; j < COLS; ++j)
204 result[i][j] = matrixA[i][j] - matrixB[i][j];
211 std::enable_if_t<IsNumber<Scalar>::value,
int> = 0>
216 for (size_type i = 0; i < ROWS; ++i)
217 for (size_type j = 0; j < COLS; ++j)
218 result[i][j] = matrix[i][j] * scalar;
225 std::enable_if_t<IsNumber<Scalar>::value,
int> = 0>
230 for (size_type i = 0; i < ROWS; ++i)
231 for (size_type j = 0; j < COLS; ++j)
232 result[i][j] = scalar * matrix[i][j];
239 std::enable_if_t<IsNumber<Scalar>::value,
int> = 0>
244 for (size_type i = 0; i < ROWS; ++i)
245 for (size_type j = 0; j < COLS; ++j)
246 result[i][j] = matrix[i][j] / scalar;
253 template <
class OtherScalar,
int otherCols>
259 for (size_type i = 0; i < matrixA.mat_rows(); ++i)
260 for (size_type j = 0; j < matrixB.mat_cols(); ++j)
263 for (size_type k = 0; k < matrixA.mat_cols(); ++k)
264 result[i][j] += matrixA[i][k] * matrixB[k][j];
276 template <
class OtherMatrix, std::enable_if_t<
277 Impl::IsStaticSizeMatrix_v<OtherMatrix>
278 and not Impl::IsFieldMatrix_v<OtherMatrix>
281 const OtherMatrix& matrixB)
283 using Field =
typename PromotionTraits<K, typename OtherMatrix::field_type>::PromotedType;
285 for (std::size_t j=0; j<
rows; ++j)
286 matrixB.
mtv(matrixA[j], result[j]);
296 template <
class OtherMatrix, std::enable_if_t<
297 Impl::IsStaticSizeMatrix_v<OtherMatrix>
298 and not Impl::IsFieldMatrix_v<OtherMatrix>
303 using Field =
typename PromotionTraits<K, typename OtherMatrix::field_type>::PromotedType;
305 for (std::size_t j=0; j<
cols; ++j)
307 auto B_j = Impl::ColumnVectorView(matrixB, j);
308 auto result_j = Impl::ColumnVectorView(result, j);
309 matrixA.mv(B_j, result_j);
320 for (size_type i=0; i<l; i++) {
321 for (size_type j=0; j<
cols; j++) {
323 for (size_type k=0; k<
rows; k++)
324 C[i][j] +=
M[i][k]*(*
this)[k][j];
333 template <
int r,
int c>
336 static_assert(r == c,
"Cannot rightmultiply with non-square matrix");
337 static_assert(r ==
cols,
"Size mismatch");
340 for (size_type i=0; i<
rows; i++)
341 for (size_type j=0; j<
cols; j++) {
343 for (size_type k=0; k<
cols; k++)
344 (*
this)[i][j] += C[i][k]*
M[k][j];
355 for (size_type i=0; i<
rows; i++) {
356 for (size_type j=0; j<l; j++) {
358 for (size_type k=0; k<
cols; k++)
359 C[i][j] += (*
this)[i][k]*
M[k][j];
366 static constexpr size_type mat_rows() {
return ROWS; }
367 static constexpr size_type mat_cols() {
return COLS; }
369 row_reference mat_access ( size_type i )
375 const_row_reference mat_access ( size_type i )
const
386 class FieldMatrix<K,1,1> :
public DenseMatrix< FieldMatrix<K,1,1> >
388 FieldVector<K,1> _data;
389 typedef DenseMatrix< FieldMatrix<K,1,1> > Base;
409 constexpr static int rows = 1;
412 constexpr static int cols = 1;
423 std::copy_n(l.begin(),
std::min(
static_cast< std::size_t
>( 1 ), l.size()), &_data);
427 typename = std::enable_if_t<HasDenseMatrixAssigner<FieldMatrix, T>::value>>
433 using Base::operator=;
442 template <
class OtherScalar>
444 const FieldMatrix<OtherScalar,1,1>& matrixB)
446 return FieldMatrix<typename PromotionTraits<K,OtherScalar>::PromotedType,1,1>{matrixA[0][0] + matrixB[0][0]};
451 std::enable_if_t<IsNumber<Scalar>::value,
int> = 0>
455 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1>{matrix[0][0] + scalar};
460 std::enable_if_t<IsNumber<Scalar>::value,
int> = 0>
464 return FieldMatrix<typename PromotionTraits<Scalar,K>::PromotedType,1,1>{scalar + matrix[0][0]};
468 template <
class OtherScalar>
470 const FieldMatrix<OtherScalar,1,1>& matrixB)
472 return FieldMatrix<typename PromotionTraits<K,OtherScalar>::PromotedType,1,1>{matrixA[0][0] - matrixB[0][0]};
477 std::enable_if_t<IsNumber<Scalar>::value,
int> = 0>
481 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1>{matrix[0][0] - scalar};
486 std::enable_if_t<IsNumber<Scalar>::value,
int> = 0>
490 return FieldMatrix<typename PromotionTraits<Scalar,K>::PromotedType,1,1>{scalar - matrix[0][0]};
495 std::enable_if_t<IsNumber<Scalar>::value,
int> = 0>
498 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1> {matrix[0][0] * scalar};
503 std::enable_if_t<IsNumber<Scalar>::value,
int> = 0>
506 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1> {scalar * matrix[0][0]};
511 std::enable_if_t<IsNumber<Scalar>::value,
int> = 0>
514 return FieldMatrix<typename PromotionTraits<K,Scalar>::PromotedType,1,1> {matrix[0][0] / scalar};
521 template <
class OtherScalar,
int otherCols>
523 const FieldMatrix<OtherScalar, 1, otherCols>& matrixB)
525 FieldMatrix<typename PromotionTraits<K,OtherScalar>::PromotedType,1,otherCols> result;
527 for (size_type j = 0; j < matrixB.mat_cols(); ++j)
528 result[0][j] = matrixA[0][0] * matrixB[0][j];
539 template <
class OtherMatrix, std::enable_if_t<
540 Impl::IsStaticSizeMatrix_v<OtherMatrix>
541 and not Impl::IsFieldMatrix_v<OtherMatrix>
542 and (OtherMatrix::rows==1)
545 const OtherMatrix& matrixB)
547 using Field =
typename PromotionTraits<K, typename OtherMatrix::field_type>::PromotedType;
549 for (std::size_t j=0; j<
rows; ++j)
550 matrixB.
mtv(matrixA[j], result[j]);
560 template <
class OtherMatrix, std::enable_if_t<
561 Impl::IsStaticSizeMatrix_v<OtherMatrix>
562 and not Impl::IsFieldMatrix_v<OtherMatrix>
563 and (OtherMatrix::cols==1)
565 friend auto operator* (
const OtherMatrix& matrixA,
568 using Field =
typename PromotionTraits<K, typename OtherMatrix::field_type>::PromotedType;
570 for (std::size_t j=0; j<
cols; ++j)
572 auto B_j = Impl::ColumnVectorView(matrixB, j);
573 auto result_j = Impl::ColumnVectorView(result, j);
574 matrixA.mv(B_j, result_j);
583 FieldMatrix<K,l,1> C;
584 for (size_type j=0; j<l; j++)
585 C[j][0] =
M[j][0]*(*
this)[0][0];
600 FieldMatrix<K,1,l> C;
602 for (size_type j=0; j<l; j++)
603 C[0][j] =
M[0][j]*_data[0];
608 static constexpr size_type mat_rows() {
return 1; }
609 static constexpr size_type mat_cols() {
return 1; }
611 row_reference mat_access ([[maybe_unused]] size_type i)
617 const_row_reference mat_access ([[maybe_unused]] size_type i)
const
653 operator const K& ()
const {
return _data[0]; }
659 std::ostream& operator<< (std::ostream& s,
const FieldMatrix<K,1,1>& a)
667 namespace FMatrixHelp {
670 template <
typename K>
673 using real_type =
typename FieldTraits<K>::real_type;
674 inverse[0][0] = real_type(1.0)/matrix[0][0];
679 template <
typename K>
687 template <
typename K>
690 using real_type =
typename FieldTraits<K>::real_type;
692 K det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
693 K det_1 = real_type(1.0)/det;
694 inverse[0][0] = matrix[1][1] * det_1;
695 inverse[0][1] = - matrix[0][1] * det_1;
696 inverse[1][0] = - matrix[1][0] * det_1;
697 inverse[1][1] = matrix[0][0] * det_1;
703 template <
typename K>
706 using real_type =
typename FieldTraits<K>::real_type;
708 K det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
709 K det_1 = real_type(1.0)/det;
710 inverse[0][0] = matrix[1][1] * det_1;
711 inverse[1][0] = - matrix[0][1] * det_1;
712 inverse[0][1] = - matrix[1][0] * det_1;
713 inverse[1][1] = matrix[0][0] * det_1;
718 template <
typename K>
721 using real_type =
typename FieldTraits<K>::real_type;
723 K t4 = matrix[0][0] * matrix[1][1];
724 K t6 = matrix[0][0] * matrix[1][2];
725 K t8 = matrix[0][1] * matrix[1][0];
726 K t10 = matrix[0][2] * matrix[1][0];
727 K t12 = matrix[0][1] * matrix[2][0];
728 K t14 = matrix[0][2] * matrix[2][0];
730 K det = (t4*matrix[2][2]-t6*matrix[2][1]-t8*matrix[2][2]+
731 t10*matrix[2][1]+t12*matrix[1][2]-t14*matrix[1][1]);
732 K t17 = real_type(1.0)/det;
734 inverse[0][0] = (matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1])*t17;
735 inverse[0][1] = -(matrix[0][1] * matrix[2][2] - matrix[0][2] * matrix[2][1])*t17;
736 inverse[0][2] = (matrix[0][1] * matrix[1][2] - matrix[0][2] * matrix[1][1])*t17;
737 inverse[1][0] = -(matrix[1][0] * matrix[2][2] - matrix[1][2] * matrix[2][0])*t17;
738 inverse[1][1] = (matrix[0][0] * matrix[2][2] - t14) * t17;
739 inverse[1][2] = -(t6-t10) * t17;
740 inverse[2][0] = (matrix[1][0] * matrix[2][1] - matrix[1][1] * matrix[2][0]) * t17;
741 inverse[2][1] = -(matrix[0][0] * matrix[2][1] - t12) * t17;
742 inverse[2][2] = (t4-t8) * t17;
748 template <
typename K>
751 using real_type =
typename FieldTraits<K>::real_type;
753 K t4 = matrix[0][0] * matrix[1][1];
754 K t6 = matrix[0][0] * matrix[1][2];
755 K t8 = matrix[0][1] * matrix[1][0];
756 K t10 = matrix[0][2] * matrix[1][0];
757 K t12 = matrix[0][1] * matrix[2][0];
758 K t14 = matrix[0][2] * matrix[2][0];
760 K det = (t4*matrix[2][2]-t6*matrix[2][1]-t8*matrix[2][2]+
761 t10*matrix[2][1]+t12*matrix[1][2]-t14*matrix[1][1]);
762 K t17 = real_type(1.0)/det;
764 inverse[0][0] = (matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1])*t17;
765 inverse[1][0] = -(matrix[0][1] * matrix[2][2] - matrix[0][2] * matrix[2][1])*t17;
766 inverse[2][0] = (matrix[0][1] * matrix[1][2] - matrix[0][2] * matrix[1][1])*t17;
767 inverse[0][1] = -(matrix[1][0] * matrix[2][2] - matrix[1][2] * matrix[2][0])*t17;
768 inverse[1][1] = (matrix[0][0] * matrix[2][2] - t14) * t17;
769 inverse[2][1] = -(t6-t10) * t17;
770 inverse[0][2] = (matrix[1][0] * matrix[2][1] - matrix[1][1] * matrix[2][0]) * t17;
771 inverse[1][2] = -(matrix[0][0] * matrix[2][1] - t12) * t17;
772 inverse[2][2] = (t4-t8) * t17;
778 template<
class K,
int m,
int n,
int p >
785 for( size_type i = 0; i < m; ++i )
787 for( size_type j = 0; j < p; ++j )
789 ret[ i ][ j ] = K( 0 );
790 for( size_type k = 0; k < n; ++k )
791 ret[ i ][ j ] += A[ i ][ k ] * B[ k ][ j ];
797 template <
typename K,
int rows,
int cols>
800 typedef typename FieldMatrix<K,rows,cols>::size_type size_type;
802 for(size_type i=0; i<cols; i++)
803 for(size_type j=0; j<cols; j++)
806 for(size_type k=0; k<rows; k++)
807 ret[i][j]+=matrix[k][i]*matrix[k][j];
811 using Dune::DenseMatrixHelp::multAssign;
814 template <
typename K,
int rows,
int cols>
817 typedef typename FieldMatrix<K,rows,cols>::size_type size_type;
819 for(size_type i=0; i<cols; ++i)
822 for(size_type j=0; j<rows; ++j)
823 ret[i] += matrix[j][i]*x[j];
828 template <
typename K,
int rows,
int cols>
832 multAssign(matrix,x,ret);
837 template <
typename K,
int rows,
int cols>
Macro for wrapping boundary checks.
A dense n x m matrix.
Definition: densematrix.hh:140
derived_type operator-() const
Matrix negation.
Definition: densematrix.hh:298
void mtv(const X &x, Y &y) const
y = A^T x
Definition: densematrix.hh:387
constexpr size_type M() const
number of columns
Definition: densematrix.hh:703
FieldMatrix< K, ROWS, COLS > & rightmultiply(const DenseMatrix< M2 > &M)
Multiplies M from the right to this matrix.
Definition: densematrix.hh:645
derived_type & operator/=(const field_type &k)
vector space division by scalar
Definition: densematrix.hh:329
derived_type & operator*=(const field_type &k)
vector space multiplication with scalar
Definition: densematrix.hh:321
derived_type & operator-=(const DenseMatrix< Other > &x)
vector space subtraction
Definition: densematrix.hh:312
static constexpr int blocklevel
The number of block levels we contain. This is the leaf, that is, 1.
Definition: densematrix.hh:178
Traits::row_type row_type
The type used to represent a row (must fulfill the Dune::DenseVector interface)
Definition: densematrix.hh:169
Traits::size_type size_type
The type used for the index access and size operation.
Definition: densematrix.hh:166
Traits::const_row_reference const_row_reference
The type used to represent a reference to a constant row (usually const row_type &)
Definition: densematrix.hh:175
Traits::row_reference row_reference
The type used to represent a reference to a row (usually row_type &)
Definition: densematrix.hh:172
derived_type & operator+=(const DenseMatrix< Other > &x)
vector space addition
Definition: densematrix.hh:289
A dense n x m matrix.
Definition: fmatrix.hh:117
constexpr FieldMatrix()=default
Default constructor.
FieldMatrix & operator=(const FieldMatrix< T, ROWS, COLS > &x)
copy assignment from FieldMatrix over a different field
Definition: fmatrix.hh:161
FieldMatrix< K, rows, l > rightmultiplyany(const FieldMatrix< K, cols, l > &M) const
Multiplies M from the right to this matrix, this matrix is not modified.
Definition: fmatrix.hh:351
FieldMatrix< K, l, cols > leftmultiplyany(const FieldMatrix< K, l, rows > &M) const
Multiplies M from the left to this matrix, this matrix is not modified.
Definition: fmatrix.hh:316
FieldMatrix & rightmultiply(const FieldMatrix< K, r, c > &M)
Multiplies M from the right to this matrix.
Definition: fmatrix.hh:334
friend auto operator*(const FieldMatrix &matrix, Scalar scalar)
vector space multiplication with scalar
Definition: fmatrix.hh:212
FieldMatrix & operator=(FieldMatrix< T, rows, cols > const &)=delete
no copy assignment from FieldMatrix of different size
static constexpr int rows
The number of rows.
Definition: fmatrix.hh:123
FieldMatrix< K, COLS, ROWS > transposed() const
Return transposed of the matrix as FieldMatrix.
Definition: fmatrix.hh:172
FieldMatrix(std::initializer_list< Dune::FieldVector< K, cols > > const &l)
Constructor initializing the matrix from a list of vector.
Definition: fmatrix.hh:140
static constexpr int cols
The number of columns.
Definition: fmatrix.hh:125
friend auto operator/(const FieldMatrix &matrix, Scalar scalar)
vector space division by scalar
Definition: fmatrix.hh:240
friend auto operator+(const FieldMatrix &matrixA, const FieldMatrix< OtherScalar, ROWS, COLS > &matrixB)
vector space addition – two-argument version
Definition: fmatrix.hh:183
FieldMatrix & operator=(const FieldMatrix &)=default
copy assignment operator
Implements a matrix constructed from a given type representing a field and a compile-time given numbe...
A few common exception classes.
static FieldVector< K, cols > multTransposed(const FieldMatrix< K, rows, cols > &matrix, const FieldVector< K, rows > &x)
calculates ret = matrix^T * x
Definition: fmatrix.hh:838
static K invertMatrix_retTransposed(const FieldMatrix< K, 1, 1 > &matrix, FieldMatrix< K, 1, 1 > &inverse)
invert scalar without changing the original matrix
Definition: fmatrix.hh:680
static void multMatrix(const FieldMatrix< K, m, n > &A, const FieldMatrix< K, n, p > &B, FieldMatrix< K, m, p > &ret)
calculates ret = A * B
Definition: fmatrix.hh:779
static K invertMatrix(const FieldMatrix< K, 1, 1 > &matrix, FieldMatrix< K, 1, 1 > &inverse)
invert scalar without changing the original matrix
Definition: fmatrix.hh:671
static FieldVector< K, rows > mult(const FieldMatrix< K, rows, cols > &matrix, const FieldVector< K, cols > &x)
calculates ret = matrix * x
Definition: fmatrix.hh:829
static void multTransposedMatrix(const FieldMatrix< K, rows, cols > &matrix, FieldMatrix< K, cols, cols > &ret)
calculates ret= A_t*A
Definition: fmatrix.hh:798
static void multAssignTransposed(const FieldMatrix< K, rows, cols > &matrix, const FieldVector< K, rows > &x, FieldVector< K, cols > &ret)
calculates ret = matrix^T * x
Definition: fmatrix.hh:815
Eigenvalue computations for the FieldMatrix class.
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_ASSERT_BOUNDS(cond)
If DUNE_CHECK_BOUNDS is defined: check if condition cond holds; otherwise, do nothing.
Definition: boundschecking.hh:30
auto min(ADLTag< 0 >, const V &v1, const V &v2)
implements binary Simd::min()
Definition: defaults.hh:89
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:235
Dune namespace.
Definition: alignedallocator.hh:13
Various precision settings for calculations with FieldMatrix and FieldVector.
Traits for type conversions and type information.