Dune Core Modules (2.9.0)

umfpack.hh
Go to the documentation of this file.
1// SPDX-FileCopyrightText: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
2// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
3// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
4// vi: set et ts=4 sw=2 sts=2:
5#ifndef DUNE_ISTL_UMFPACK_HH
6#define DUNE_ISTL_UMFPACK_HH
7
8#if HAVE_SUITESPARSE_UMFPACK || defined DOXYGEN
9
10#include<complex>
11#include<type_traits>
12
13#include<umfpack.h>
14
18#include<dune/istl/bccsmatrixinitializer.hh>
22#include <dune/istl/solverfactory.hh>
23
24
25
26namespace Dune {
38 // FORWARD DECLARATIONS
39 template<class M, class T, class TM, class TD, class TA>
40 class SeqOverlappingSchwarz;
41
42 template<class T, bool tag>
43 struct SeqOverlappingSchwarzAssemblerHelper;
44
45 // wrapper class for C-Function Calls in the backend. Choose the right function namespace
46 // depending on the template parameter used.
47 template<typename T>
48 struct UMFPackMethodChooser
49 {
50 static constexpr bool valid = false ;
51 };
52
53 template<>
54 struct UMFPackMethodChooser<double>
55 {
56 static constexpr bool valid = true ;
57
58 template<typename... A>
59 static void defaults(A... args)
60 {
61 umfpack_dl_defaults(args...);
62 }
63 template<typename... A>
64 static void free_numeric(A... args)
65 {
66 umfpack_dl_free_numeric(args...);
67 }
68 template<typename... A>
69 static void free_symbolic(A... args)
70 {
71 umfpack_dl_free_symbolic(args...);
72 }
73 template<typename... A>
74 static int load_numeric(A... args)
75 {
76 return umfpack_dl_load_numeric(args...);
77 }
78 template<typename... A>
79 static void numeric(A... args)
80 {
81 umfpack_dl_numeric(args...);
82 }
83 template<typename... A>
84 static void report_info(A... args)
85 {
86 umfpack_dl_report_info(args...);
87 }
88 template<typename... A>
89 static void report_status(A... args)
90 {
91 umfpack_dl_report_status(args...);
92 }
93 template<typename... A>
94 static int save_numeric(A... args)
95 {
96 return umfpack_dl_save_numeric(args...);
97 }
98 template<typename... A>
99 static void solve(A... args)
100 {
101 umfpack_dl_solve(args...);
102 }
103 template<typename... A>
104 static void symbolic(A... args)
105 {
106 umfpack_dl_symbolic(args...);
107 }
108 };
109
110 template<>
111 struct UMFPackMethodChooser<std::complex<double> >
112 {
113 static constexpr bool valid = true ;
114
115 template<typename... A>
116 static void defaults(A... args)
117 {
118 umfpack_zl_defaults(args...);
119 }
120 template<typename... A>
121 static void free_numeric(A... args)
122 {
123 umfpack_zl_free_numeric(args...);
124 }
125 template<typename... A>
126 static void free_symbolic(A... args)
127 {
128 umfpack_zl_free_symbolic(args...);
129 }
130 template<typename... A>
131 static int load_numeric(A... args)
132 {
133 return umfpack_zl_load_numeric(args...);
134 }
135 template<typename... A>
136 static void numeric(const long int* cs, const long int* ri, const double* val, A... args)
137 {
138 umfpack_zl_numeric(cs,ri,val,NULL,args...);
139 }
140 template<typename... A>
141 static void report_info(A... args)
142 {
143 umfpack_zl_report_info(args...);
144 }
145 template<typename... A>
146 static void report_status(A... args)
147 {
148 umfpack_zl_report_status(args...);
149 }
150 template<typename... A>
151 static int save_numeric(A... args)
152 {
153 return umfpack_zl_save_numeric(args...);
154 }
155 template<typename... A>
156 static void solve(long int m, const long int* cs, const long int* ri, std::complex<double>* val, double* x, const double* b,A... args)
157 {
158 const double* cval = reinterpret_cast<const double*>(val);
159 umfpack_zl_solve(m,cs,ri,cval,NULL,x,NULL,b,NULL,args...);
160 }
161 template<typename... A>
162 static void symbolic(long int m, long int n, const long int* cs, const long int* ri, const double* val, A... args)
163 {
164 umfpack_zl_symbolic(m,n,cs,ri,val,NULL,args...);
165 }
166 };
167
168 namespace Impl
169 {
170 template<class M>
171 struct UMFPackVectorChooser
172 {};
173
174 template<typename T, typename A, int n, int m>
175 struct UMFPackVectorChooser<BCRSMatrix<FieldMatrix<T,n,m>,A > >
176 {
178 using domain_type = BlockVector<
179 FieldVector<T,m>,
180 typename std::allocator_traits<A>::template rebind_alloc<FieldVector<T,m> > >;
182 using range_type = BlockVector<
183 FieldVector<T,n>,
184 typename std::allocator_traits<A>::template rebind_alloc<FieldVector<T,n> > >;
185 };
186
187 template<typename T, typename A>
188 struct UMFPackVectorChooser<BCRSMatrix<T,A> >
189 {
191 using domain_type = BlockVector<T, A>;
193 using range_type = BlockVector<T, A>;
194 };
195 }
196
210 template<typename M>
212 : public InverseOperator<
213 typename Impl::UMFPackVectorChooser<M>::domain_type,
214 typename Impl::UMFPackVectorChooser<M>::range_type >
215 {
216 using T = typename M::field_type;
217
218 public:
220 using Matrix = M;
221 using matrix_type = M;
223 typedef ISTL::Impl::BCCSMatrix<typename Matrix::field_type, long int> UMFPackMatrix;
225 typedef ISTL::Impl::BCCSMatrixInitializer<M, long int> MatrixInitializer;
227 using domain_type = typename Impl::UMFPackVectorChooser<M>::domain_type;
229 using range_type = typename Impl::UMFPackVectorChooser<M>::range_type;
230
233 {
234 return SolverCategory::Category::sequential;
235 }
236
245 UMFPack(const Matrix& matrix, int verbose=0) : matrixIsLoaded_(false)
246 {
247 //check whether T is a supported type
248 static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
249 "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
250 Caller::defaults(UMF_Control);
251 setVerbosity(verbose);
252 setMatrix(matrix);
253 }
254
263 UMFPack(const Matrix& matrix, int verbose, bool) : matrixIsLoaded_(false)
264 {
265 //check whether T is a supported type
266 static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
267 "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
268 Caller::defaults(UMF_Control);
269 setVerbosity(verbose);
270 setMatrix(matrix);
271 }
272
282 UMFPack(const Matrix& mat_, const ParameterTree& config)
283 : UMFPack(mat_, config.get<int>("verbose", 0))
284 {}
285
288 UMFPack() : matrixIsLoaded_(false), verbosity_(0)
289 {
290 //check whether T is a supported type
291 static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
292 "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
293 Caller::defaults(UMF_Control);
294 }
295
306 UMFPack(const Matrix& mat_, const char* file, int verbose=0)
307 {
308 //check whether T is a supported type
309 static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
310 "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
311 Caller::defaults(UMF_Control);
312 setVerbosity(verbose);
313 int errcode = Caller::load_numeric(&UMF_Numeric, const_cast<char*>(file));
314 if ((errcode == UMFPACK_ERROR_out_of_memory) || (errcode == UMFPACK_ERROR_file_IO))
315 {
316 matrixIsLoaded_ = false;
317 setMatrix(mat_);
318 saveDecomposition(file);
319 }
320 else
321 {
322 matrixIsLoaded_ = true;
323 std::cout << "UMFPack decomposition successfully loaded from " << file << std::endl;
324 }
325 }
326
333 UMFPack(const char* file, int verbose=0)
334 {
335 //check whether T is a supported type
336 static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
337 "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
338 Caller::defaults(UMF_Control);
339 int errcode = Caller::load_numeric(&UMF_Numeric, const_cast<char*>(file));
340 if (errcode == UMFPACK_ERROR_out_of_memory)
341 DUNE_THROW(Dune::Exception, "ran out of memory while loading UMFPack decomposition");
342 if (errcode == UMFPACK_ERROR_file_IO)
343 DUNE_THROW(Dune::Exception, "IO error while loading UMFPack decomposition");
344 matrixIsLoaded_ = true;
345 std::cout << "UMFPack decomposition successfully loaded from " << file << std::endl;
346 setVerbosity(verbose);
347 }
348
349 virtual ~UMFPack()
350 {
351 if ((umfpackMatrix_.N() + umfpackMatrix_.M() > 0) || matrixIsLoaded_)
352 free();
353 }
354
359 {
360 if (umfpackMatrix_.N() != b.dim())
361 DUNE_THROW(Dune::ISTLError, "Size of right-hand-side vector b does not match the number of matrix rows!");
362 if (umfpackMatrix_.M() != x.dim())
363 DUNE_THROW(Dune::ISTLError, "Size of solution vector x does not match the number of matrix columns!");
364 if (b.size() == 0)
365 return;
366
367 double UMF_Apply_Info[UMFPACK_INFO];
368 Caller::solve(UMFPACK_A,
369 umfpackMatrix_.getColStart(),
370 umfpackMatrix_.getRowIndex(),
371 umfpackMatrix_.getValues(),
372 reinterpret_cast<double*>(&x[0]),
373 reinterpret_cast<double*>(&b[0]),
374 UMF_Numeric,
375 UMF_Control,
376 UMF_Apply_Info);
377
378 //this is a direct solver
379 res.iterations = 1;
380 res.converged = true;
381 res.elapsed = UMF_Apply_Info[UMFPACK_SOLVE_WALLTIME];
382
383 printOnApply(UMF_Apply_Info);
384 }
385
389 virtual void apply (domain_type& x, range_type& b, [[maybe_unused]] double reduction, InverseOperatorResult& res)
390 {
391 apply(x,b,res);
392 }
393
399 void apply(T* x, T* b)
400 {
401 double UMF_Apply_Info[UMFPACK_INFO];
402 Caller::solve(UMFPACK_A,
403 umfpackMatrix_.getColStart(),
404 umfpackMatrix_.getRowIndex(),
405 umfpackMatrix_.getValues(),
406 x,
407 b,
408 UMF_Numeric,
409 UMF_Control,
410 UMF_Apply_Info);
411 printOnApply(UMF_Apply_Info);
412 }
413
425 void setOption(unsigned int option, double value)
426 {
427 if (option >= UMFPACK_CONTROL)
428 DUNE_THROW(RangeError, "Requested non-existing UMFPack option");
429
430 UMF_Control[option] = value;
431 }
432
436 void saveDecomposition(const char* file)
437 {
438 int errcode = Caller::save_numeric(UMF_Numeric, const_cast<char*>(file));
439 if (errcode != UMFPACK_OK)
440 DUNE_THROW(Dune::Exception,"IO ERROR while trying to save UMFPack decomposition");
441 }
442
444 void setMatrix(const Matrix& matrix)
445 {
446 if ((umfpackMatrix_.N() + umfpackMatrix_.M() > 0) || matrixIsLoaded_)
447 free();
448 if (matrix.N() == 0 or matrix.M() == 0)
449 return;
450
451 if (umfpackMatrix_.N() + umfpackMatrix_.M() + umfpackMatrix_.nonzeroes() != 0)
452 umfpackMatrix_.free();
453 umfpackMatrix_.setSize(MatrixDimension<Matrix>::rowdim(matrix),
454 MatrixDimension<Matrix>::coldim(matrix));
455 ISTL::Impl::BCCSMatrixInitializer<Matrix, long int> initializer(umfpackMatrix_);
456
457 copyToBCCSMatrix(initializer, matrix);
458
459 decompose();
460 }
461
462 template<class S>
463 void setSubMatrix(const Matrix& _mat, const S& rowIndexSet)
464 {
465 if ((umfpackMatrix_.N() + umfpackMatrix_.M() > 0) || matrixIsLoaded_)
466 free();
467
468 if (umfpackMatrix_.N() + umfpackMatrix_.M() + umfpackMatrix_.nonzeroes() != 0)
469 umfpackMatrix_.free();
470
471 umfpackMatrix_.setSize(rowIndexSet.size()*MatrixDimension<Matrix>::rowdim(_mat) / _mat.N(),
472 rowIndexSet.size()*MatrixDimension<Matrix>::coldim(_mat) / _mat.M());
473 ISTL::Impl::BCCSMatrixInitializer<Matrix, long int> initializer(umfpackMatrix_);
474
475 copyToBCCSMatrix(initializer, ISTL::Impl::MatrixRowSubset<Matrix,std::set<std::size_t> >(_mat,rowIndexSet));
476
477 decompose();
478 }
479
487 void setVerbosity(int v)
488 {
489 verbosity_ = v;
490 // set the verbosity level in UMFPack
491 if (verbosity_ == 0)
492 UMF_Control[UMFPACK_PRL] = 1;
493 if (verbosity_ == 1)
494 UMF_Control[UMFPACK_PRL] = 2;
495 if (verbosity_ == 2)
496 UMF_Control[UMFPACK_PRL] = 4;
497 }
498
504 {
505 return UMF_Numeric;
506 }
507
513 {
514 return umfpackMatrix_;
515 }
516
521 void free()
522 {
523 if (!matrixIsLoaded_)
524 {
525 Caller::free_symbolic(&UMF_Symbolic);
526 umfpackMatrix_.free();
527 }
528 Caller::free_numeric(&UMF_Numeric);
529 matrixIsLoaded_ = false;
530 }
531
532 const char* name() { return "UMFPACK"; }
533
534 private:
535 typedef typename Dune::UMFPackMethodChooser<T> Caller;
536
537 template<class Mat,class X, class TM, class TD, class T1>
538 friend class SeqOverlappingSchwarz;
539 friend struct SeqOverlappingSchwarzAssemblerHelper<UMFPack<Matrix>,true>;
540
542 void decompose()
543 {
544 double UMF_Decomposition_Info[UMFPACK_INFO];
545 Caller::symbolic(static_cast<int>(umfpackMatrix_.N()),
546 static_cast<int>(umfpackMatrix_.N()),
547 umfpackMatrix_.getColStart(),
548 umfpackMatrix_.getRowIndex(),
549 reinterpret_cast<double*>(umfpackMatrix_.getValues()),
550 &UMF_Symbolic,
551 UMF_Control,
552 UMF_Decomposition_Info);
553 Caller::numeric(umfpackMatrix_.getColStart(),
554 umfpackMatrix_.getRowIndex(),
555 reinterpret_cast<double*>(umfpackMatrix_.getValues()),
556 UMF_Symbolic,
557 &UMF_Numeric,
558 UMF_Control,
559 UMF_Decomposition_Info);
560 Caller::report_status(UMF_Control,UMF_Decomposition_Info[UMFPACK_STATUS]);
561 if (verbosity_ == 1)
562 {
563 std::cout << "[UMFPack Decomposition]" << std::endl;
564 std::cout << "Wallclock Time taken: " << UMF_Decomposition_Info[UMFPACK_NUMERIC_WALLTIME] << " (CPU Time: " << UMF_Decomposition_Info[UMFPACK_NUMERIC_TIME] << ")" << std::endl;
565 std::cout << "Flops taken: " << UMF_Decomposition_Info[UMFPACK_FLOPS] << std::endl;
566 std::cout << "Peak Memory Usage: " << UMF_Decomposition_Info[UMFPACK_PEAK_MEMORY]*UMF_Decomposition_Info[UMFPACK_SIZE_OF_UNIT] << " bytes" << std::endl;
567 std::cout << "Condition number estimate: " << 1./UMF_Decomposition_Info[UMFPACK_RCOND] << std::endl;
568 std::cout << "Numbers of non-zeroes in decomposition: L: " << UMF_Decomposition_Info[UMFPACK_LNZ] << " U: " << UMF_Decomposition_Info[UMFPACK_UNZ] << std::endl;
569 }
570 if (verbosity_ == 2)
571 {
572 Caller::report_info(UMF_Control,UMF_Decomposition_Info);
573 }
574 }
575
576 void printOnApply(double* UMF_Info)
577 {
578 Caller::report_status(UMF_Control,UMF_Info[UMFPACK_STATUS]);
579 if (verbosity_ > 0)
580 {
581 std::cout << "[UMFPack Solve]" << std::endl;
582 std::cout << "Wallclock Time: " << UMF_Info[UMFPACK_SOLVE_WALLTIME] << " (CPU Time: " << UMF_Info[UMFPACK_SOLVE_TIME] << ")" << std::endl;
583 std::cout << "Flops Taken: " << UMF_Info[UMFPACK_SOLVE_FLOPS] << std::endl;
584 std::cout << "Iterative Refinement steps taken: " << UMF_Info[UMFPACK_IR_TAKEN] << std::endl;
585 std::cout << "Error Estimate: " << UMF_Info[UMFPACK_OMEGA1] << " resp. " << UMF_Info[UMFPACK_OMEGA2] << std::endl;
586 }
587 }
588
589 UMFPackMatrix umfpackMatrix_;
590 bool matrixIsLoaded_;
591 int verbosity_;
592 void *UMF_Symbolic;
593 void *UMF_Numeric;
594 double UMF_Control[UMFPACK_CONTROL];
595 };
596
597 template<typename T, typename A, int n, int m>
598 struct IsDirectSolver<UMFPack<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
599 {
600 enum { value=true};
601 };
602
603 template<typename T, typename A>
604 struct StoresColumnCompressed<UMFPack<BCRSMatrix<T,A> > >
605 {
606 enum { value = true };
607 };
608
609 struct UMFPackCreator {
610 template<class F,class=void> struct isValidBlock : std::false_type{};
611 template<class B> struct isValidBlock<B, std::enable_if_t<std::is_same<typename FieldTraits<B>::real_type,double>::value>> : std::true_type {};
612
613 template<typename TL, typename M>
614 std::shared_ptr<Dune::InverseOperator<typename Dune::TypeListElement<1, TL>::type,
615 typename Dune::TypeListElement<2, TL>::type>>
616 operator() (TL /*tl*/, const M& mat, const Dune::ParameterTree& config,
617 std::enable_if_t<
618 isValidBlock<typename Dune::TypeListElement<1, TL>::type::block_type>::value,int> = 0) const
619 {
620 int verbose = config.get("verbose", 0);
621 return std::make_shared<Dune::UMFPack<M>>(mat,verbose);
622 }
623
624 // second version with SFINAE to validate the template parameters of UMFPack
625 template<typename TL, typename M>
626 std::shared_ptr<Dune::InverseOperator<typename Dune::TypeListElement<1, TL>::type,
627 typename Dune::TypeListElement<2, TL>::type>>
628 operator() (TL /*tl*/, const M& /*mat*/, const Dune::ParameterTree& /*config*/,
629 std::enable_if_t<
630 !isValidBlock<typename Dune::TypeListElement<1, TL>::type::block_type>::value,int> = 0) const
631 {
632 DUNE_THROW(UnsupportedType,
633 "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
634 }
635 };
636 DUNE_REGISTER_DIRECT_SOLVER("umfpack",Dune::UMFPackCreator());
637} // end namespace Dune
638
639#endif // HAVE_SUITESPARSE_UMFPACK
640
641#endif //DUNE_ISTL_UMFPACK_HH
Implementation of the BCRSMatrix class.
Base class for Dune-Exceptions.
Definition: exceptions.hh:96
derive error class from the base class in common
Definition: istlexception.hh:19
Abstract base class for all solvers.
Definition: solver.hh:99
A generic dynamic dense matrix.
Definition: matrix.hh:561
size_type M() const
Return the number of columns.
Definition: matrix.hh:700
size_type N() const
Return the number of rows.
Definition: matrix.hh:695
Hierarchical structure of string parameters.
Definition: parametertree.hh:37
std::string get(const std::string &key, const std::string &defaultValue) const
get value as string
Definition: parametertree.cc:185
Default exception class for range errors.
Definition: exceptions.hh:254
The UMFPack direct sparse solver.
Definition: umfpack.hh:215
A few common exception classes.
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_THROW(E, m)
Definition: exceptions.hh:218
void free()
free allocated space.
Definition: umfpack.hh:521
virtual void apply(domain_type &x, range_type &b, InverseOperatorResult &res)
Apply inverse operator,.
Definition: umfpack.hh:358
virtual SolverCategory::Category category() const
Category of the solver (see SolverCategory::Category)
Definition: umfpack.hh:232
void setMatrix(const Matrix &matrix)
Initialize data from given matrix.
Definition: umfpack.hh:444
UMFPack(const Matrix &mat_, const ParameterTree &config)
Construct a solver object from a matrix.
Definition: umfpack.hh:282
ISTL::Impl::BCCSMatrix< typename Matrix::field_type, long int > UMFPackMatrix
The corresponding UMFPack matrix type.
Definition: umfpack.hh:223
UMFPack(const Matrix &mat_, const char *file, int verbose=0)
Try loading a decomposition from file and do a decomposition if unsuccessful.
Definition: umfpack.hh:306
typename Impl::UMFPackVectorChooser< M >::range_type range_type
The type of the range of the solver.
Definition: umfpack.hh:229
UMFPack()
default constructor
Definition: umfpack.hh:288
ISTL::Impl::BCCSMatrixInitializer< M, long int > MatrixInitializer
Type of an associated initializer class.
Definition: umfpack.hh:225
void apply(T *x, T *b)
additional apply method with c-arrays in analogy to superlu
Definition: umfpack.hh:399
void setVerbosity(int v)
sets the verbosity level for the UMFPack solver
Definition: umfpack.hh:487
UMFPack(const char *file, int verbose=0)
try loading a decomposition from file
Definition: umfpack.hh:333
void saveDecomposition(const char *file)
saves a decomposition to a file
Definition: umfpack.hh:436
UMFPackMatrix & getInternalMatrix()
Return the column compress matrix from UMFPack.
Definition: umfpack.hh:512
typename Impl::UMFPackVectorChooser< M >::domain_type domain_type
The type of the domain of the solver.
Definition: umfpack.hh:227
UMFPack(const Matrix &matrix, int verbose=0)
Construct a solver object from a matrix.
Definition: umfpack.hh:245
virtual void apply(domain_type &x, range_type &b, double reduction, InverseOperatorResult &res)
apply inverse operator, with given convergence criteria.
Definition: umfpack.hh:389
void setOption(unsigned int option, double value)
Set UMFPack-specific options.
Definition: umfpack.hh:425
M Matrix
The matrix type.
Definition: umfpack.hh:220
UMFPack(const Matrix &matrix, int verbose, bool)
Constructor for compatibility with SuperLU standard constructor.
Definition: umfpack.hh:263
void * getFactorization()
Return the matrix factorization.
Definition: umfpack.hh:503
Dune namespace.
Definition: alignedallocator.hh:13
STL namespace.
Implementations of the inverse operator interface.
Templates characterizing the type of a solver.
Statistics about the application of an inverse operator.
Definition: solver.hh:48
double elapsed
Elapsed time in seconds.
Definition: solver.hh:82
int iterations
Number of iterations.
Definition: solver.hh:67
bool converged
True if convergence criterion has been met.
Definition: solver.hh:73
Category
Definition: solvercategory.hh:23
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)