Dune Core Modules (2.7.0)

raviartthomas3cube2dlocalinterpolation.hh
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 #ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS3_CUBE2D_LOCALINTERPOLATION_HH
4 #define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS3_CUBE2D_LOCALINTERPOLATION_HH
5 
6 #include <vector>
7 
9 #include <dune/localfunctions/common/localinterpolation.hh>
10 
11 namespace Dune
12 {
13 
22  template<class LB>
24  {
25 
26  public:
29  {
30  sign0 = sign1 = sign2 = sign3 = 1.0;
31  }
32 
38  RT3Cube2DLocalInterpolation (unsigned int s)
39  {
40  sign0 = sign1 = sign2 = sign3 = 1.0;
41  if (s & 1)
42  {
43  sign0 *= -1.0;
44  }
45  if (s & 2)
46  {
47  sign1 *= -1.0;
48  }
49  if (s & 4)
50  {
51  sign2 *= -1.0;
52  }
53  if (s & 8)
54  {
55  sign3 *= -1.0;
56  }
57 
58  n0[0] = -1.0;
59  n0[1] = 0.0;
60  n1[0] = 1.0;
61  n1[1] = 0.0;
62  n2[0] = 0.0;
63  n2[1] = -1.0;
64  n3[0] = 0.0;
65  n3[1] = 1.0;
66  }
67 
76  template<typename F, typename C>
77  void interpolate (const F& ff, std::vector<C>& out) const
78  {
79  // f gives v*outer normal at a point on the edge!
80  typedef typename LB::Traits::RangeFieldType Scalar;
81  typedef typename LB::Traits::DomainFieldType Vector;
82 
83  auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
84 
85  out.resize(40);
86  fill(out.begin(), out.end(), 0.0);
87 
88  const int qOrder = 9;
90 
91  for (typename QuadratureRule<Scalar,1>::const_iterator it=rule.begin(); it!=rule.end(); ++it)
92  {
93  Scalar qPos = it->position();
94  typename LB::Traits::DomainType localPos;
95 
96  localPos[0] = 0.0;
97  localPos[1] = qPos;
98  auto y = f(localPos);
99  out[0] += (y[0]*n0[0] + y[1]*n0[1])*it->weight()*sign0;
100  out[1] += (y[0]*n0[0] + y[1]*n0[1])*(2.0*qPos - 1.0)*it->weight();
101  out[2] += (y[0]*n0[0] + y[1]*n0[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign0;
102  out[3] += (y[0]*n0[0] + y[1]*n0[1])*(20.0*qPos*qPos*qPos - 30.0*qPos*qPos + 12.0*qPos - 1.0)*it->weight();
103 
104  localPos[0] = 1.0;
105  localPos[1] = qPos;
106  y = f(localPos);
107  out[4] += (y[0]*n1[0] + y[1]*n1[1])*it->weight()*sign1;
108  out[5] += (y[0]*n1[0] + y[1]*n1[1])*(1.0 - 2.0*qPos)*it->weight();
109  out[6] += (y[0]*n1[0] + y[1]*n1[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign1;
110  out[7] += (y[0]*n1[0] + y[1]*n1[1])*(-20.0*qPos*qPos*qPos + 30.0*qPos*qPos - 12.0*qPos + 1.0)*it->weight();
111 
112  localPos[0] = qPos;
113  localPos[1] = 0.0;
114  y = f(localPos);
115  out[8] += (y[0]*n2[0] + y[1]*n2[1])*it->weight()*sign2;
116  out[9] += (y[0]*n2[0] + y[1]*n2[1])*(1.0 - 2.0*qPos)*it->weight();
117  out[10] += (y[0]*n2[0] + y[1]*n2[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign2;
118  out[11] += (y[0]*n2[0] + y[1]*n2[1])*(-20.0*qPos*qPos*qPos + 30.0*qPos*qPos - 12.0*qPos + 1.0)*it->weight();
119 
120  localPos[0] = qPos;
121  localPos[1] = 1.0;
122  y = f(localPos);
123  out[12] += (y[0]*n3[0] + y[1]*n3[1])*it->weight()*sign3;
124  out[13] += (y[0]*n3[0] + y[1]*n3[1])*(2.0*qPos - 1.0)*it->weight();
125  out[14] += (y[0]*n3[0] + y[1]*n3[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign3;
126  out[15] += (y[0]*n3[0] + y[1]*n3[1])*(20.0*qPos*qPos*qPos - 30.0*qPos*qPos + 12.0*qPos - 1.0)*it->weight();
127  }
128 
130 
131  for (typename QuadratureRule<Vector,2>::const_iterator it = rule2.begin();
132  it != rule2.end(); ++it)
133  {
134  FieldVector<double,2> qPos = it->position();
135 
136  auto y = f(qPos);
137  double l0_x=1.0;
138  double l1_x=2.0*qPos[0]-1.0;
139  double l2_x=6.0*qPos[0]*qPos[0]-6.0*qPos[0]+1.0;
140  double l3_x=20.0*qPos[0]*qPos[0]*qPos[0] - 30.0*qPos[0]*qPos[0] + 12.0*qPos[0] - 1.0;
141  double l0_y=1.0;
142  double l1_y=2.0*qPos[1]-1.0;
143  double l2_y=6.0*qPos[1]*qPos[1]-6.0*qPos[1]+1.0;
144  double l3_y=20.0*qPos[1]*qPos[1]*qPos[1] - 30.0*qPos[1]*qPos[1] + 12.0*qPos[1] - 1.0;
145 
146  out[16] += y[0]*l0_x*l0_y*it->weight();
147  out[17] += y[0]*l0_x*l1_y*it->weight();
148  out[18] += y[0]*l0_x*l2_y*it->weight();
149  out[19] += y[0]*l0_x*l3_y*it->weight();
150  out[20] += y[0]*l1_x*l0_y*it->weight();
151  out[21] += y[0]*l1_x*l1_y*it->weight();
152  out[22] += y[0]*l1_x*l2_y*it->weight();
153  out[23] += y[0]*l1_x*l3_y*it->weight();
154  out[24] += y[0]*l2_x*l0_y*it->weight();
155  out[25] += y[0]*l2_x*l1_y*it->weight();
156  out[26] += y[0]*l2_x*l2_y*it->weight();
157  out[27] += y[0]*l2_x*l3_y*it->weight();
158 
159  out[28] += y[1]*l0_x*l0_y*it->weight();
160  out[29] += y[1]*l0_x*l1_y*it->weight();
161  out[30] += y[1]*l0_x*l2_y*it->weight();
162  out[31] += y[1]*l1_x*l0_y*it->weight();
163  out[32] += y[1]*l1_x*l1_y*it->weight();
164  out[33] += y[1]*l1_x*l2_y*it->weight();
165  out[34] += y[1]*l2_x*l0_y*it->weight();
166  out[35] += y[1]*l2_x*l1_y*it->weight();
167  out[36] += y[1]*l2_x*l2_y*it->weight();
168  out[37] += y[1]*l3_x*l0_y*it->weight();
169  out[38] += y[1]*l3_x*l1_y*it->weight();
170  out[39] += y[1]*l3_x*l2_y*it->weight();
171  }
172  }
173 
174  private:
175  typename LB::Traits::RangeFieldType sign0, sign1, sign2, sign3;
176  typename LB::Traits::DomainType n0, n1, n2, n3;
177  };
178 }
179 
180 #endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS3_CUBE2D_LOCALINTERPOLATION_HH
vector space out of a tensor product of fields.
Definition: fvector.hh:96
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:126
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:254
Second order Raviart-Thomas shape functions on the reference quadrilateral.
Definition: raviartthomas3cube2dlocalinterpolation.hh:24
RT3Cube2DLocalInterpolation(unsigned int s)
Make set number s, where 0 <= s < 8.
Definition: raviartthomas3cube2dlocalinterpolation.hh:38
RT3Cube2DLocalInterpolation()
Standard constructor.
Definition: raviartthomas3cube2dlocalinterpolation.hh:28
void interpolate(const F &ff, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: raviartthomas3cube2dlocalinterpolation.hh:77
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:775
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:233
Dune namespace.
Definition: alignedallocator.hh:14
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (May 16, 22:29, 2024)