Dune Core Modules (2.6.0)

ldl.hh
Go to the documentation of this file.
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 #ifndef DUNE_ISTL_LDL_HH
4 #define DUNE_ISTL_LDL_HH
5 
6 #if HAVE_SUITESPARSE_LDL || defined DOXYGEN
7 
8 #include <iostream>
9 #include <type_traits>
10 
11 #ifdef __cplusplus
12 extern "C"
13 {
14 #include "ldl.h"
15 #include "amd.h"
16 }
17 #endif
18 
20 #include <dune/common/unused.hh>
21 
22 #include <dune/istl/colcompmatrix.hh>
23 #include <dune/istl/solvers.hh>
24 #include <dune/istl/solvertype.hh>
25 
26 namespace Dune {
38  // forward declarations
39  template<class M, class T, class TM, class TD, class TA>
40  class SeqOverlappingSchwarz;
41 
42  template<class T, bool tag>
43  struct SeqOverlappingSchwarzAssemblerHelper;
44 
51  template<class Matrix>
52  class LDL
53  {};
54 
68  template<typename T, typename A, int n, int m>
69  class LDL<BCRSMatrix<FieldMatrix<T,n,m>,A > >
70  : public InverseOperator<BlockVector<FieldVector<T,m>, typename A::template rebind<FieldVector<T,m> >::other>,
71  BlockVector<FieldVector<T,n>, typename A::template rebind<FieldVector<T,n> >::other> >
72  {
73  public:
82  typedef Dune::BlockVector<FieldVector<T,m>, typename A::template rebind<FieldVector<T,m> >::other> domain_type;
84  typedef Dune::BlockVector<FieldVector<T,n>, typename A::template rebind<FieldVector<T,n> >::other> range_type;
85 
88  {
89  return SolverCategory::Category::sequential;
90  }
91 
101  LDL(const Matrix& matrix, int verbose=0) : matrixIsLoaded_(false), verbose_(verbose)
102  {
103  //check whether T is a supported type
104  static_assert(std::is_same<T,double>::value,"Unsupported Type in LDL (only double supported)");
105  setMatrix(matrix);
106  }
107 
117  LDL(const Matrix& matrix, int verbose, bool) : matrixIsLoaded_(false), verbose_(verbose)
118  {
119  //check whether T is a supported type
120  static_assert(std::is_same<T,double>::value,"Unsupported Type in LDL (only double supported)");
121  setMatrix(matrix);
122  }
123 
125  LDL() : matrixIsLoaded_(false), verbose_(0)
126  {}
127 
129  virtual ~LDL()
130  {
131  if ((ldlMatrix_.N() + ldlMatrix_.M() > 0) || matrixIsLoaded_)
132  free();
133  }
134 
137  {
138  const int dimMat(ldlMatrix_.N());
139  ldl_perm(dimMat, Y_, reinterpret_cast<double*>(&b[0]), P_);
140  ldl_lsolve(dimMat, Y_, Lp_, Li_, Lx_);
141  ldl_dsolve(dimMat, Y_, D_);
142  ldl_ltsolve(dimMat, Y_, Lp_, Li_, Lx_);
143  ldl_permt(dimMat, reinterpret_cast<double*>(&x[0]), Y_, P_);
144  // this is a direct solver
145  res.iterations = 1;
146  res.converged = true;
147  }
148 
150  virtual void apply(domain_type& x, range_type& b, double reduction, InverseOperatorResult& res)
151  {
152  DUNE_UNUSED_PARAMETER(reduction);
153  apply(x,b,res);
154  }
155 
161  void apply(T* x, T* b)
162  {
163  const int dimMat(ldlMatrix_.N());
164  ldl_perm(dimMat, Y_, b, P_);
165  ldl_lsolve(dimMat, Y_, Lp_, Li_, Lx_);
166  ldl_dsolve(dimMat, Y_, D_);
167  ldl_ltsolve(dimMat, Y_, Lp_, Li_, Lx_);
168  ldl_permt(dimMat, x, Y_, P_);
169  }
170 
171  void setOption(unsigned int option, double value)
172  {
173  DUNE_UNUSED_PARAMETER(option);
174  DUNE_UNUSED_PARAMETER(value);
175  }
176 
178  void setMatrix(const Matrix& matrix)
179  {
180  if ((ldlMatrix_.N() + ldlMatrix_.M() > 0) || matrixIsLoaded_)
181  free();
182  ldlMatrix_ = matrix;
183  decompose();
184  }
185 
186  template<class S>
187  void setSubMatrix(const Matrix& matrix, const S& rowIndexSet)
188  {
189  if ((ldlMatrix_.N() + ldlMatrix_.M() > 0) || matrixIsLoaded_)
190  free();
191  ldlMatrix_.setMatrix(matrix,rowIndexSet);
192  decompose();
193  }
194 
199  inline void setVerbosity(int v)
200  {
201  verbose_=v;
202  }
203 
209  {
210  return ldlMatrix_;
211  }
212 
217  void free()
218  {
219  delete [] D_;
220  delete [] Y_;
221  delete [] Lp_;
222  delete [] Lx_;
223  delete [] Li_;
224  delete [] P_;
225  delete [] Pinv_;
226  ldlMatrix_.free();
227  matrixIsLoaded_ = false;
228  }
229 
231  inline const char* name()
232  {
233  return "LDL";
234  }
235 
240  inline double* getD()
241  {
242  return D_;
243  }
244 
249  inline int* getLp()
250  {
251  return Lp_;
252  }
253 
258  inline int* getLi()
259  {
260  return Li_;
261  }
262 
267  inline double* getLx()
268  {
269  return Lx_;
270  }
271 
272  private:
273  template<class M,class X, class TM, class TD, class T1>
274  friend class SeqOverlappingSchwarz;
275 
276  friend struct SeqOverlappingSchwarzAssemblerHelper<LDL<Matrix>,true>;
277 
279  void decompose()
280  {
281  // allocate vectors
282  const int dimMat(ldlMatrix_.N());
283  D_ = new double [dimMat];
284  Y_ = new double [dimMat];
285  Lp_ = new int [dimMat + 1];
286  Parent_ = new int [dimMat];
287  Lnz_ = new int [dimMat];
288  Flag_ = new int [dimMat];
289  Pattern_ = new int [dimMat];
290  P_ = new int [dimMat];
291  Pinv_ = new int [dimMat];
292 
293  double Info [AMD_INFO];
294  if(amd_order (dimMat, ldlMatrix_.getColStart(), ldlMatrix_.getRowIndex(), P_, (double *) NULL, Info) < AMD_OK)
295  DUNE_THROW(InvalidStateException,"Error: AMD failed!");
296  if(verbose_ > 0)
297  amd_info (Info);
298  // compute the symbolic factorisation
299  ldl_symbolic(dimMat, ldlMatrix_.getColStart(), ldlMatrix_.getRowIndex(), Lp_, Parent_, Lnz_, Flag_, P_, Pinv_);
300  // initialise those entries of additionalVectors_ whose dimension is known only now
301  Lx_ = new double [Lp_[dimMat]];
302  Li_ = new int [Lp_[dimMat]];
303  // compute the numeric factorisation
304  const int rank(ldl_numeric(dimMat, ldlMatrix_.getColStart(), ldlMatrix_.getRowIndex(), ldlMatrix_.getValues(),
305  Lp_, Parent_, Lnz_, Li_, Lx_, D_, Y_, Pattern_, Flag_, P_, Pinv_));
306  // free temporary vectors
307  delete [] Flag_;
308  delete [] Pattern_;
309  delete [] Parent_;
310  delete [] Lnz_;
311 
312  if(rank!=dimMat)
313  DUNE_THROW(InvalidStateException,"Error: LDL factorisation failed!");
314  }
315 
316  LDLMatrix ldlMatrix_;
317  bool matrixIsLoaded_;
318  int verbose_;
319  int* Lp_;
320  int* Parent_;
321  int* Lnz_;
322  int* Flag_;
323  int* Pattern_;
324  int* P_;
325  int* Pinv_;
326  double* D_;
327  double* Y_;
328  double* Lx_;
329  int* Li_;
330  };
331 
332  template<typename T, typename A, int n, int m>
333  struct IsDirectSolver<LDL<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
334  {
335  enum {value = true};
336  };
337 
338  template<typename T, typename A, int n, int m>
339  struct StoresColumnCompressed<LDL<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
340  {
341  enum {value = true};
342  };
343 
344 }
345 
346 #endif //HAVE_SUITESPARSE_LDL
347 #endif //DUNE_ISTL_LDL_HH
A sparse block matrix with compressed row storage.
Definition: bcrsmatrix.hh:423
A vector of blocks with memory management.
Definition: bvector.hh:317
A dense n x m matrix.
Definition: fmatrix.hh:68
Default exception if a function was called while the object is not in a valid state for that function...
Definition: exceptions.hh:279
Abstract base class for all solvers.
Definition: solver.hh:91
Use the LDL package to directly solve linear systems – empty default class.
Definition: ldl.hh:53
A generic dynamic dense matrix.
Definition: matrix.hh:555
Sequential overlapping Schwarz preconditioner.
Definition: overlappingschwarz.hh:742
A few common exception classes.
decltype(auto) apply(F &&f, ArgTuple &&args)
Apply function with arguments given as tuple.
Definition: apply.hh:58
#define DUNE_UNUSED_PARAMETER(parm)
A macro to mark intentionally unused function parameters with.
Definition: unused.hh:25
#define DUNE_THROW(E, m)
Definition: exceptions.hh:216
Dune::BlockVector< FieldVector< T, n >, typename A::template rebind< FieldVector< T, n > >::other > range_type
The type of the range of the solver.
Definition: ldl.hh:84
void setVerbosity(int v)
Sets the verbosity level for the solver.
Definition: ldl.hh:199
void apply(T *x, T *b)
Additional apply method with c-arrays in analogy to superlu.
Definition: ldl.hh:161
ColCompMatrixInitializer< BCRSMatrix< FieldMatrix< T, n, m >, A > > MatrixInitializer
Type of an associated initializer class.
Definition: ldl.hh:80
double * getLx()
Get factorization Lx.
Definition: ldl.hh:267
virtual void apply(domain_type &x, range_type &b, double reduction, InverseOperatorResult &res)
apply inverse operator, with given convergence criteria.
Definition: ldl.hh:150
virtual ~LDL()
Default constructor.
Definition: ldl.hh:129
Dune::BlockVector< FieldVector< T, m >, typename A::template rebind< FieldVector< T, m > >::other > domain_type
The type of the domain of the solver.
Definition: ldl.hh:82
void free()
Free allocated space.
Definition: ldl.hh:217
virtual void apply(domain_type &x, range_type &b, InverseOperatorResult &res)
Apply inverse operator,.
Definition: ldl.hh:136
void setMatrix(const Matrix &matrix)
Initialize data from given matrix.
Definition: ldl.hh:178
const char * name()
Get method name.
Definition: ldl.hh:231
int * getLi()
Get factorization Li.
Definition: ldl.hh:258
LDL(const Matrix &matrix, int verbose, bool)
Constructor for compatibility with SuperLU standard constructor.
Definition: ldl.hh:117
Dune::ColCompMatrix< Matrix > LDLMatrix
The corresponding SuperLU Matrix type.
Definition: ldl.hh:78
int * getLp()
Get factorization Lp.
Definition: ldl.hh:249
virtual SolverCategory::Category category() const
Category of the solver (see SolverCategory::Category)
Definition: ldl.hh:87
LDL()
Default constructor.
Definition: ldl.hh:125
double * getD()
Get factorization diagonal matrix D.
Definition: ldl.hh:240
LDLMatrix & getInternalMatrix()
Return the column compress matrix.
Definition: ldl.hh:208
LDL(const Matrix &matrix, int verbose=0)
Construct a solver object from a BCRSMatrix.
Definition: ldl.hh:101
Dune namespace.
Definition: alignedallocator.hh:10
Implementations of the inverse operator interface.
Templates characterizing the type of a solver.
Inititializer for the ColCompMatrix as needed by OverlappingSchwarz.
Definition: colcompmatrix.hh:154
Statistics about the application of an inverse operator.
Definition: solver.hh:41
int iterations
Number of iterations.
Definition: solver.hh:59
bool converged
True if convergence criterion has been met.
Definition: solver.hh:65
Category
Definition: solvercategory.hh:21
Definition of the DUNE_UNUSED macro for the case that config.h is not available.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (Apr 27, 22:29, 2024)