Dune Core Modules (2.5.0)

Dune::MatrixImp::DenseMatrixBase< B, A > Class Template Reference

A Vector of blocks with different blocksizes. More...

#include <dune/istl/matrix.hh>

Classes

class  ConstIterator
 ConstIterator class for sequential access. More...
 
class  Iterator
 Iterator class for sequential access. More...
 

Public Types

typedef B::field_type field_type
 export the type representing the field
 
typedef A allocator_type
 export the allocator type
 
typedef A::size_type size_type
 The size type for the index access.
 
typedef BlockVector< B, A > value_type
 Type of the elements of the outer vector, i.e., dynamic vectors of B. More...
 
typedef BlockVector< B, A > block_type
 Same as value_type, here for historical reasons.
 
using iterator = Iterator
 Export the iterator type using std naming rules.
 
using const_iterator = ConstIterator
 Export the const iterator type using std naming rules.
 
typedef base_array_unmanaged< B, std::allocator< B > >::iterator Iterator
 make iterators available as types
 
typedef base_array_unmanaged< B, std::allocator< B > >::const_iterator ConstIterator
 make iterators available as types
 
typedef B member_type
 export the type representing the components
 

Public Member Functions

 DenseMatrixBase ()
 
 DenseMatrixBase (size_type rows, size_type columns)
 
 DenseMatrixBase (const DenseMatrixBase &a)
 copy constructor, has copy semantics
 
 ~DenseMatrixBase ()
 free dynamic memory
 
void resize (size_type rows, size_type columns)
 same effect as constructor with same argument
 
DenseMatrixBaseoperator= (const DenseMatrixBase &a)
 assignment
 
DenseMatrixBaseoperator= (const field_type &k)
 assign from scalar
 
reference operator[] (size_type i)
 random access to blocks
 
const_reference operator[] (size_type i) const
 same for read only access
 
Iterator begin ()
 begin Iterator
 
Iterator end ()
 end Iterator
 
Iterator beforeEnd ()
 
Iterator beforeBegin () const
 
Iterator find (size_type i)
 random access returning iterator (end if not contained)
 
ConstIterator find (size_type i) const
 random access returning iterator (end if not contained)
 
ConstIterator begin () const
 begin ConstIterator
 
ConstIterator end () const
 end ConstIterator
 
ConstIterator beforeEnd () const
 
ConstIterator rend () const
 end ConstIterator
 
size_type N () const
 number of blocks in the vector (are of variable size here)
 
block_vector_unmanagedoperator+= (const block_vector_unmanaged &y)
 vector space addition
 
block_vector_unmanagedoperator-= (const block_vector_unmanaged &y)
 vector space subtraction
 
block_vector_unmanagedoperator*= (const field_type &k)
 vector space multiplication with scalar
 
block_vector_unmanagedoperator/= (const field_type &k)
 vector space division by scalar
 
block_vector_unmanagedaxpy (const field_type &a, const block_vector_unmanaged &y)
 vector space axpy operation
 
PromotionTraits< field_type, typenameOtherB::field_type >::PromotedType operator* (const block_vector_unmanaged< OtherB, OtherA > &y) const
 indefinite vector dot product \(\left (x^T \cdot y \right)\) which corresponds to Petsc's VecTDot More...
 
PromotionTraits< field_type, typenameOtherB::field_type >::PromotedType dot (const block_vector_unmanaged< OtherB, OtherA > &y) const
 vector dot product \(\left (x^H \cdot y \right)\) which corresponds to Petsc's VecDot More...
 
FieldTraits< field_type >::real_type one_norm () const
 one norm (sum over absolute values of entries)
 
FieldTraits< field_type >::real_type one_norm_real () const
 simplified one norm (uses Manhattan norm for complex values)
 
FieldTraits< field_type >::real_type two_norm () const
 two norm sqrt(sum over squared values of entries)
 
FieldTraits< field_type >::real_type two_norm2 () const
 Square of the two-norm (the sum over the squared values of the entries)
 
FieldTraits< ft >::real_type infinity_norm () const
 infinity norm (maximum of absolute values of entries)
 
FieldTraits< ft >::real_type infinity_norm () const
 infinity norm (maximum of absolute values of entries)
 
FieldTraits< ft >::real_type infinity_norm_real () const
 simplified infinity norm (uses Manhattan norm for complex values)
 
FieldTraits< ft >::real_type infinity_norm_real () const
 simplified infinity norm (uses Manhattan norm for complex values)
 
size_type dim () const
 dimension of the vector space
 
iterator beforeBegin ()
 
size_type size () const
 number of blocks in the array (are of size 1 here)
 

Detailed Description

template<class B, class A = std::allocator<B>>
class Dune::MatrixImp::DenseMatrixBase< B, A >

A Vector of blocks with different blocksizes.

This class started as a copy of VariableBlockVector, which used to be used for the internal memory managerment of the 'Matrix' class. However, that mechanism stopped working when I started using the RandomAccessIteratorFacade in VariableBlockVector (308dd85483108f8baaa4051251e2c75e2a9aed32, to make VariableBlockVector pass a number of tightened interface compliance tests), and I couldn't quite figure out how to fix that. However, using VariableBlockVector in Matrix internally was a hack anyway, so I simply took the working version of VariableBlockVector and copied it here under the new name of DenseMatrixBase. This is still hacky, but one step closer to an elegant solution.

Member Typedef Documentation

◆ value_type

template<class B , class A = std::allocator<B>>
typedef BlockVector<B,A> Dune::MatrixImp::DenseMatrixBase< B, A >::value_type

Type of the elements of the outer vector, i.e., dynamic vectors of B.

Note that this is not the type referred to by the iterators and random access operators, which return proxy objects.

Constructor & Destructor Documentation

◆ DenseMatrixBase() [1/2]

template<class B , class A = std::allocator<B>>
Dune::MatrixImp::DenseMatrixBase< B, A >::DenseMatrixBase ( )
inline

constructor without arguments makes empty vector, object cannot be used yet

◆ DenseMatrixBase() [2/2]

template<class B , class A = std::allocator<B>>
Dune::MatrixImp::DenseMatrixBase< B, A >::DenseMatrixBase ( size_type  rows,
size_type  columns 
)
inline

make vector with given number of blocks each having a constant size, object is fully usable then.

Parameters
_nblocksNumber of blocks
mNumber of elements in each block

Member Function Documentation

◆ beforeBegin() [1/2]

iterator Dune::base_array_unmanaged< B, std::allocator< B > >::beforeBegin ( )
inlineinherited
Returns
an iterator that is positioned before the first entry of the vector.

◆ beforeBegin() [2/2]

template<class B , class A = std::allocator<B>>
Iterator Dune::MatrixImp::DenseMatrixBase< B, A >::beforeBegin ( ) const
inline
Returns
an iterator that is positioned before the first entry of the vector.

◆ beforeEnd() [1/2]

template<class B , class A = std::allocator<B>>
Iterator Dune::MatrixImp::DenseMatrixBase< B, A >::beforeEnd ( )
inline
Returns
an iterator that is positioned before the end iterator of the vector, i.e. at the last entry.

◆ beforeEnd() [2/2]

template<class B , class A = std::allocator<B>>
ConstIterator Dune::MatrixImp::DenseMatrixBase< B, A >::beforeEnd ( ) const
inline
Returns
an iterator that is positioned before the end iterator of the vector. i.e. at the last element.

◆ dot()

PromotionTraits< field_type, typenameOtherB::field_type >::PromotedType Dune::block_vector_unmanaged< B, std::allocator< B > >::dot ( const block_vector_unmanaged< OtherB, OtherA > &  y) const
inlineinherited

vector dot product \(\left (x^H \cdot y \right)\) which corresponds to Petsc's VecDot

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecDot.html

Parameters
yother (compatible) vector
Returns

◆ operator*()

PromotionTraits< field_type, typenameOtherB::field_type >::PromotedType Dune::block_vector_unmanaged< B, std::allocator< B > >::operator* ( const block_vector_unmanaged< OtherB, OtherA > &  y) const
inlineinherited

indefinite vector dot product \(\left (x^T \cdot y \right)\) which corresponds to Petsc's VecTDot

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecTDot.html

Parameters
yother (compatible) vector
Returns

The documentation for this class was generated from the following file:
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 23, 23:29, 2024)