Dune Core Modules (2.4.2)

Matrix and Vector classes that support a block recursive structure capable of representing the natural structure from Finite Element discretisations. More...

Modules

 Block Recursive Iterative Kernels
 
 IO for matrices and vectors.
 Provides methods for reading and writing matrices and vectors in various formats.
 

Files

file  matrixmatrix.hh
 provides functions for sparse matrix matrix multiplication.
 
file  matrixutils.hh
 Some handy generic functions for ISTL matrices.
 

Classes

struct  Dune::CompressionStatistics< size_type >
 Statistics about compression achieved in implicit mode. More...
 
class  Dune::ImplicitMatrixBuilder< M_ >
 A wrapper for uniform access to the BCRSMatrix during and after the build stage in implicit build mode. More...
 
class  Dune::BCRSMatrix< B, A >
 A sparse block matrix with compressed row storage. More...
 
class  Dune::BDMatrix< B, A >
 A block-diagonal matrix. More...
 
class  Dune::BTDMatrix< B, A >
 A block-tridiagonal matrix. More...
 
class  Dune::BlockVector< B, A >
 A vector of blocks with memory management. More...
 
class  Dune::Matrix< T, A >
 A generic dynamic dense matrix. More...
 
struct  Dune::MatMultMatResult< M1, M2 >
 Helper TMP to get the result type of a sparse matrix matrix multiplication ( \(C=A*B\)) More...
 
struct  Dune::TransposedMatMultMatResult< M1, M2 >
 Helper TMP to get the result type of a sparse matrix matrix multiplication ( \(C=A*B\)) More...
 
struct  Dune::CheckIfDiagonalPresent< Matrix, blocklevel, l >
 Check whether the a matrix has diagonal values on blocklevel recursion levels. More...
 
class  Dune::VariableBlockVector< B, A >
 A Vector of blocks with different blocksizes. More...
 

Functions

template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::matMultTransposeMat (BCRSMatrix< FieldMatrix< T, n, k >, A > &res, const BCRSMatrix< FieldMatrix< T, n, m >, A1 > &mat, const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &matt, bool tryHard=false)
 Calculate product of a sparse matrix with a transposed sparse matrices ( \(C=A*B^T\)). More...
 
template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::matMultMat (BCRSMatrix< FieldMatrix< T, n, m >, A > &res, const BCRSMatrix< FieldMatrix< T, n, k >, A1 > &mat, const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &matt, bool tryHard=false)
 Calculate product of two sparse matrices ( \(C=A*B\)). More...
 
template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::transposeMatMultMat (BCRSMatrix< FieldMatrix< T, n, m >, A > &res, const BCRSMatrix< FieldMatrix< T, k, n >, A1 > &mat, const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &matt, bool tryHard=false)
 Calculate product of a transposed sparse matrix with another sparse matrices ( \(C=A^T*B\)). More...
 
template<class M >
int Dune::countNonZeros (const M &matrix)
 Get the number of nonzero fields in the matrix. More...
 

Detailed Description

Matrix and Vector classes that support a block recursive structure capable of representing the natural structure from Finite Element discretisations.

The interface of our matrices is designed according to what they represent from a mathematical point of view. The vector classes are representations of vector spaces:

  • FieldVector represents a vector space \(V=K^n\) where the field \(K\) is represented by a numeric type (e.g. double, float, complex). \(n\) is known at compile time.
  • BlockVector represents a vector space \(V=W\times W \times W \times\cdots\times W\) where W is itself a vector space.
  • VariableBlockVector represents a vector space having a two-level block structure of the form \(V=B^{n_1}\times B^{n_2}\times\ldots \times B^{n_m}\), i.e. it is constructed from \(m\) vector spaces, \(i=1,\ldots,m\).

The matrix classes represent linear maps \(A: V \mapsto W\) from vector space \(V\) to vector space \(W\) the recursive block structure of the matrix rows and columns immediately follows from the recursive block structure of the vectors representing the domain and range of the mapping, respectively:

  • FieldMatrix represents a linear map \(M: V_1 \to V_2\) where \(V_1=K^n\) and \(V_2=K^m\) are vector spaces over the same field represented by a numerix type.
  • BCRSMatrix represents a linear map \(M: V_1 \to V_2\) where \(V_1=W\times W \times W \times\cdots\times W\) and \(V_2=W\times W \times W \times\cdots\times W\) where W is itself a vector space.
  • VariableBCRSMatrix is not yet implemented.

Function Documentation

◆ countNonZeros()

template<class M >
int Dune::countNonZeros ( const M &  matrix)
inline

Get the number of nonzero fields in the matrix.

This is not the number of nonzero blocks, but the number of non zero scalar entries (on blocklevel 1) if the matrix is viewed as a flat matrix.

For FieldMatrix this is simply the number of columns times the number of rows, for a BCRSMatrix<FieldMatrix<K,n,m>> this is the number of nonzero blocks time n*m.

Referenced by Dune::Amg::MatrixHierarchy< M, PI, A >::build().

◆ matMultMat()

template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::matMultMat ( BCRSMatrix< FieldMatrix< T, n, m >, A > &  res,
const BCRSMatrix< FieldMatrix< T, n, k >, A1 > &  mat,
const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &  matt,
bool  tryHard = false 
)

Calculate product of two sparse matrices ( \(C=A*B\)).

Parameters
resMatrix for the result of the computation.
matMatrix A.
mattMatrix B.
tryHardignored

◆ matMultTransposeMat()

template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::matMultTransposeMat ( BCRSMatrix< FieldMatrix< T, n, k >, A > &  res,
const BCRSMatrix< FieldMatrix< T, n, m >, A1 > &  mat,
const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &  matt,
bool  tryHard = false 
)

Calculate product of a sparse matrix with a transposed sparse matrices ( \(C=A*B^T\)).

Parameters
resMatrix for the result of the computation.
matMatrix A.
mattMatrix B, which will be transposed before the multiplication.
tryHardignored

◆ transposeMatMultMat()

template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::transposeMatMultMat ( BCRSMatrix< FieldMatrix< T, n, m >, A > &  res,
const BCRSMatrix< FieldMatrix< T, k, n >, A1 > &  mat,
const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &  matt,
bool  tryHard = false 
)

Calculate product of a transposed sparse matrix with another sparse matrices ( \(C=A^T*B\)).

Parameters
resMatrix for the result of the computation.
matMatrix A, which will be transposed before the multiplication.
mattMatrix B.
tryHardignored
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 20, 23:31, 2024)