Dune Core Modules (2.4.1)
novlpschwarz.hh
87 };
354 };
Implementation of the BCRSMatrix class.
This file implements a vector space as a tensor product of a given vector space. The number of compon...
Traits class for generically constructing non default constructable types.
Definition: construction.hh:38
A linear operator exporting itself in matrix form.
Definition: operators.hh:94
Nonoverlapping parallel preconditioner.
Definition: novlpschwarz.hh:340
@ category
The category the preconditioner is part of.
Definition: novlpschwarz.hh:353
virtual void apply(domain_type &v, const range_type &d)
Apply the preconditioner.
Definition: novlpschwarz.hh:382
P::range_type range_type
The range type of the preconditioner.
Definition: novlpschwarz.hh:346
virtual void post(domain_type &x)
Clean up.
Definition: novlpschwarz.hh:396
C communication_type
The type of the communication object.
Definition: novlpschwarz.hh:348
NonoverlappingBlockPreconditioner(P &prec, const communication_type &c)
Constructor.
Definition: novlpschwarz.hh:363
virtual void pre(domain_type &x, range_type &b)
Prepare the preconditioner.
Definition: novlpschwarz.hh:372
P::domain_type domain_type
The domain type of the preconditioner.
Definition: novlpschwarz.hh:344
A nonoverlapping operator with communication object.
Definition: novlpschwarz.hh:60
C communication_type
The type of the communication object.
Definition: novlpschwarz.hh:71
virtual void apply(const X &x, Y &y) const
apply operator to x:
Definition: novlpschwarz.hh:101
X domain_type
The type of the domain.
Definition: novlpschwarz.hh:65
virtual const matrix_type & getmat() const
get matrix via *
Definition: novlpschwarz.hh:121
Y range_type
The type of the range.
Definition: novlpschwarz.hh:67
M matrix_type
The type of the matrix we operate on.
Definition: novlpschwarz.hh:63
virtual void applyscaleadd(field_type alpha, const X &x, Y &y) const
apply operator to x, scale and add:
Definition: novlpschwarz.hh:109
@ category
The solver category.
Definition: novlpschwarz.hh:86
X::field_type field_type
The field type of the range.
Definition: novlpschwarz.hh:69
NonoverlappingSchwarzOperator(const matrix_type &A, const communication_type &com)
constructor: just store a reference to a matrix.
Definition: novlpschwarz.hh:96
Nonoverlapping Scalar Product with communication object.
Definition: novlpschwarz.hh:255
virtual double norm(const X &x)
Norm of a right-hand side vector. The vector must be consistent on the interior+border partition.
Definition: novlpschwarz.hh:289
X domain_type
The type of the domain.
Definition: novlpschwarz.hh:258
X::field_type field_type
The type of the range.
Definition: novlpschwarz.hh:260
C communication_type
The type of the communication object.
Definition: novlpschwarz.hh:262
void make_consistent(X &x) const
make additive vector consistent
Definition: novlpschwarz.hh:296
virtual field_type dot(const X &x, const X &y)
Dot product of two vectors. It is assumed that the vectors are consistent on the interior+border part...
Definition: novlpschwarz.hh:279
NonoverlappingSchwarzScalarProduct(const communication_type &com)
Constructor.
Definition: novlpschwarz.hh:271
Base class for matrix free definition of preconditioners.
Definition: preconditioner.hh:26
Base class for scalar product and norm computation.
Definition: scalarproducts.hh:44
Simple iterative methods like Jacobi, Gauss-Seidel, SOR, SSOR, etc. in a generic way.
???
Some generic functions for pretty printing vectors and matrices.
Define general, extensible interface for operators. The available implementation wraps a matrix.
Classes providing communication interfaces for overlapping Schwarz methods.
Define general preconditioner interface.
Define base class for scalar product and norm.
Implementations of the inverse operator interface.
C communication_type
The type of the communication object.
Definition: scalarproducts.hh:79
@ solverCategory
The solver category.
Definition: scalarproducts.hh:83
@ nonoverlapping
Category for on overlapping solvers.
Definition: solvercategory.hh:23
A simple timing class.
???
|
Legal Statements / Impressum |
Hosted by TU Dresden |
generated with Hugo v0.111.3
(Nov 13, 23:29, 2024)