Dune Core Modules (2.4.1)

Iterative Solvers Template Library (ISTL)

Iterative Solvers supporting block recursive matrix and vector classes at compile time. More...

Modules

 Sparse Matrix and Vector classes
 Matrix and Vector classes that support a block recursive structure capable of representing the natural structure from Finite Element discretisations.
 
 Iterative Solvers
 

Files

file  superlu.hh
 Classes for using SuperLU with ISTL matrices.
 
file  umfpack.hh
 Classes for using UMFPack with ISTL matrices.
 

Classes

class  Dune::ILUSubdomainSolver< M, X, Y >
 base class encapsulating common algorithms of ILU0SubdomainSolver and ILUNSubdomainSolver. More...
 
class  Dune::ILU0SubdomainSolver< M, X, Y >
 Exact subdomain solver using ILU(p) with appropriate p. More...
 
class  Dune::ISTLError
 derive error class from the base class in common More...
 
class  Dune::BCRSMatrixError
 Error specific to BCRSMatrix. More...
 
class  Dune::ImplicitModeOverflowExhausted
 The overflow error used during implicit BCRSMatrix construction was exhausted. More...
 
class  Dune::SeqOverlappingSchwarz< M, X, TM, TD, TA >
 Sequential overlapping Schwarz preconditioner. More...
 
class  Dune::SuperLU< BCRSMatrix< FieldMatrix< T, n, m >, A > >
 SuperLu Solver. More...
 
class  Dune::UMFPack< Matrix >
 Use the UMFPack package to directly solve linear systems – empty default class. More...
 
class  Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >
 The UMFPack direct sparse solver for matrices of type BCRSMatrix. More...
 

Typedefs

typedef Dune::BCRSMatrix< FieldMatrix< T, n, m >, A > Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::Matrix
 The matrix type.
 
typedef Dune::ColCompMatrix< MatrixDune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::UMFPackMatrix
 The corresponding SuperLU Matrix type.
 
typedef ColCompMatrixInitializer< BCRSMatrix< FieldMatrix< T, n, m >, A > > Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::MatrixInitializer
 Type of an associated initializer class.
 
typedef Dune::BlockVector< FieldVector< T, m >, typename A::template rebind< FieldVector< T, m > >::other > Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::domain_type
 The type of the domain of the solver.
 
typedef Dune::BlockVector< FieldVector< T, n >, typename A::template rebind< FieldVector< T, n > >::other > Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::range_type
 The type of the range of the solver.
 

Functions

 Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::UMFPack (const Matrix &matrix, int verbose=0)
 Construct a solver object from a BCRSMatrix. More...
 
 Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::UMFPack (const Matrix &matrix, int verbose, bool)
 Constructor for compatibility with SuperLU standard constructor. More...
 
 Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::UMFPack ()
 default constructor
 
 Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::UMFPack (const Matrix &mat_, const char *file, int verbose=0)
 Try loading a decomposition from file and do a decomposition if unsuccessful. More...
 
 Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::UMFPack (const char *file, int verbose=0)
 try loading a decomposition from file More...
 
virtual void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::apply (domain_type &x, range_type &b, InverseOperatorResult &res)
 Apply inverse operator,. More...
 
virtual void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::apply (domain_type &x, range_type &b, double reduction, InverseOperatorResult &res)
 apply inverse operator, with given convergence criteria. More...
 
void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::apply (T *x, T *b)
 additional apply method with c-arrays in analogy to superlu More...
 
void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::setOption (unsigned int option, double value)
 Set UMFPack-specific options. More...
 
void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::saveDecomposition (const char *file)
 saves a decomposition to a file More...
 
void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::setMatrix (const Matrix &matrix)
 Initialize data from given matrix.
 
void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::setVerbosity (int v)
 sets the verbosity level for the UMFPack solver More...
 
void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::free ()
 free allocated space. More...
 
template<class S >
std::size_t Dune::ILUSubdomainSolver< M, X, Y >::copyToLocalMatrix (const M &A, S &rowset)
 Copy the local part of the global matrix to ILU. More...
 
template<class S >
void Dune::ILU0SubdomainSolver< M, X, Y >::setSubMatrix (const M &A, S &rowset)
 Set the data of the local problem. More...
 
template<class S >
void Dune::ILUNSubdomainSolver< M, X, Y >::setSubMatrix (const M &A, S &rowset)
 Set the data of the local problem. More...
 
void Dune::SuperLU< BCRSMatrix< FieldMatrix< T, n, m >, A > >::free ()
 free allocated space. More...
 
 Dune::SuperLU< BCRSMatrix< FieldMatrix< T, n, m >, A > >::SuperLU (const Matrix &mat, bool verbose=false, bool reusevector=true)
 Constructs the SuperLU solver. More...
 
 Dune::SuperLU< BCRSMatrix< FieldMatrix< T, n, m >, A > >::SuperLU ()
 Empty default constructor. More...
 
void Dune::SuperLU< BCRSMatrix< FieldMatrix< T, n, m >, A > >::setMatrix (const Matrix &mat)
 Initialize data from given matrix.
 
void Dune::SuperLU< BCRSMatrix< FieldMatrix< T, n, m >, A > >::apply (domain_type &x, range_type &b, InverseOperatorResult &res)
 Apply inverse operator,. More...
 
void Dune::SuperLU< BCRSMatrix< FieldMatrix< T, n, m >, A > >::apply (T *x, T *b)
 Apply SuperLu to C arrays.
 

Detailed Description

Iterative Solvers supporting block recursive matrix and vector classes at compile time.

The Iterative Solver Template Library applies generic programming in C++ to the domain of iterative solvers of linear systems stemming from finite element discretizations. Those discretizations exhibit a lot of structure, e.g:

  1. Certain discretizations for systems of PDEs or higher order methods result in matrices where individual entries are replaced by small blocks, say of size \(2\times 2\) or \(4\times 4\). Dense blocks of different sizes e.g. arise in \(hp\) Discontinuous Galerkin discretization methods. It is straightforward and efficient to treat these small dense blocks as fully coupled and solve them with direct methods within the iterative method.
  2. Equation-wise ordering for systems results in matrices having an \(n\times n\) block structure where \(n\) corresponds to the number of variables in the PDE and the blocks themselves are large and sparse. As an example we mention the Stokes system.
  3. Other discretisation, e.~g. those of reaction/diffusion systems, produce sparse matrices whose blocks are sparse matrices of small dense blocks,

Our matrix and vector interface supports a block recursive structure. Each sparse matrix entry can itself be either a sparse or a small dense matrix.

The solvers use this recursive block structure via template meta programming at compile time.

ISTL consists of the matrix and vector API and the solvers which use the Preconditioners preconditioners.

Function Documentation

◆ apply() [1/4]

template<typename T , typename A , int n, int m>
virtual void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::apply ( domain_type x,
range_type b,
double  reduction,
InverseOperatorResult res 
)
inlinevirtual

apply inverse operator, with given convergence criteria.

Warning
Right hand side b may be overwritten!
Parameters
xThe left hand side to store the result in.
bThe right hand side
reductionThe minimum defect reduction to achieve.
resObject to store the statistics about applying the operator.

References DUNE_UNUSED_PARAMETER.

◆ apply() [2/4]

template<typename T , typename A , int n, int m>
void Dune::SuperLU< BCRSMatrix< FieldMatrix< T, n, m >, A > >::apply ( domain_type x,
range_type b,
InverseOperatorResult res 
)

Apply inverse operator,.

Warning
Note: right hand side b may be overwritten!
Parameters
xThe left hand side to store the result in.
bThe right hand side
resObject to store the statistics about applying the operator.

◆ apply() [3/4]

template<typename T , typename A , int n, int m>
virtual void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::apply ( domain_type x,
range_type b,
InverseOperatorResult res 
)
inlinevirtual

Apply inverse operator,.

Warning
Note: right hand side b may be overwritten!
Parameters
xThe left hand side to store the result in.
bThe right hand side
resObject to store the statistics about applying the operator.

References Dune::InverseOperatorResult::converged, Dune::block_vector_unmanaged< B, A >::dim(), DUNE_THROW, Dune::InverseOperatorResult::elapsed, and Dune::InverseOperatorResult::iterations.

◆ apply() [4/4]

template<typename T , typename A , int n, int m>
void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::apply ( T *  x,
T *  b 
)
inline

additional apply method with c-arrays in analogy to superlu

Parameters
xsolution array
brhs array

◆ copyToLocalMatrix()

template<class M , class X , class Y >
template<class S >
std::size_t Dune::ILUSubdomainSolver< M, X, Y >::copyToLocalMatrix ( const M &  A,
S &  rowset 
)
protected

Copy the local part of the global matrix to ILU.

Parameters
AThe global matrix.
rowsetThe global indices of the local problem.

◆ free() [1/2]

template<typename T , typename A , int n, int m>
void Dune::SuperLU< BCRSMatrix< FieldMatrix< T, n, m >, A > >::free

free allocated space.

Warning
later calling apply will result in an error.

◆ free() [2/2]

template<typename T , typename A , int n, int m>
void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::free ( )
inline

free allocated space.

Warning
later calling apply will result in an error.

◆ saveDecomposition()

template<typename T , typename A , int n, int m>
void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::saveDecomposition ( const char *  file)
inline

saves a decomposition to a file

Parameters
filethe filename to save to

References DUNE_THROW.

◆ setOption()

template<typename T , typename A , int n, int m>
void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::setOption ( unsigned int  option,
double  value 
)
inline

Set UMFPack-specific options.

This method allows to set various options that control the UMFPack solver. More specifically, it allows to set values in the UMF_Control array. Please see the UMFPack documentation for a list of possible options and values.

Parameters
optionEntry in the UMF_Control array, e.g., UMFPACK_IRSTEP
valueCorresponding value
Exceptions
RangeErrorIf nonexisting option was requested

References DUNE_THROW.

◆ setSubMatrix() [1/2]

template<class M , class X , class Y >
template<class S >
void Dune::ILU0SubdomainSolver< M, X, Y >::setSubMatrix ( const M &  A,
S &  rowset 
)

Set the data of the local problem.

Parameters
AThe global matrix.
rowsetThe global indices of the local problem.
Template Parameters
SThe type of the set with the indices.

◆ setSubMatrix() [2/2]

template<class M , class X , class Y >
template<class S >
void Dune::ILUNSubdomainSolver< M, X, Y >::setSubMatrix ( const M &  A,
S &  rowset 
)

Set the data of the local problem.

Parameters
AThe global matrix.
rowsetThe global indices of the local problem.
Template Parameters
SThe type of the set with the indices.

◆ setVerbosity()

template<typename T , typename A , int n, int m>
void Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::setVerbosity ( int  v)
inline

sets the verbosity level for the UMFPack solver

Parameters
vverbosity level The following levels are implemented: 0 - only error messages 1 - a bit of statistics on decomposition and solution 2 - lots of statistics on decomposition and solution

◆ SuperLU() [1/2]

template<typename T , typename A , int n, int m>
Dune::SuperLU< BCRSMatrix< FieldMatrix< T, n, m >, A > >::SuperLU

Empty default constructor.

Use setMatrix to tell SuperLU for what matrix it solves. Using this constructor no vectors will be reused.

◆ SuperLU() [2/2]

template<typename T , typename A , int n, int m>
Dune::SuperLU< BCRSMatrix< FieldMatrix< T, n, m >, A > >::SuperLU ( const Matrix mat,
bool  verbose = false,
bool  reusevector = true 
)
explicit

Constructs the SuperLU solver.

During the construction the matrix will be decomposed. That means that in each apply call forward and backward substitutions take place (and no decomposition).

Parameters
matThe matrix of the system to solve.
verboseIf true some statistics are printed.
reusevectorDefault value is true. If true the two vectors are allocate in the first call to apply. These get resused in subsequent calls to apply and are deallocated in the destructor. If false these vectors are allocated at the beginning and deallocated at the end of each apply method. This allows using the same instance of superlu from different threads.

◆ UMFPack() [1/4]

template<typename T , typename A , int n, int m>
Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::UMFPack ( const char *  file,
int  verbose = 0 
)
inline

try loading a decomposition from file

Parameters
filethe decomposition file
verbosethe verbosity level
Exceptions
Dune::ExceptionWhen not being able to load the file. Does not need knowledge of the actual matrix!

References DUNE_THROW.

◆ UMFPack() [2/4]

template<typename T , typename A , int n, int m>
Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::UMFPack ( const Matrix mat_,
const char *  file,
int  verbose = 0 
)
inline

Try loading a decomposition from file and do a decomposition if unsuccessful.

Parameters
mat_the matrix to decompose when no decoposition file found
filethe decomposition file
verbosethe verbosity level

Use saveDecomposition(char* file) for manually storing a decomposition. This constructor will decompose mat_ and store the result to file if no file wasn't found in the first place. Thus, if you always use this you will only compute the decomposition once (and when you manually deleted the decomposition file).

◆ UMFPack() [3/4]

template<typename T , typename A , int n, int m>
Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::UMFPack ( const Matrix matrix,
int  verbose,
bool   
)
inline

Constructor for compatibility with SuperLU standard constructor.

This computes the matrix decomposition, and may take a long time (and use a lot of memory).

Parameters
mat_the matrix to solve for
verbose[0..2] set the verbosity level, defaults to 0

◆ UMFPack() [4/4]

template<typename T , typename A , int n, int m>
Dune::UMFPack< BCRSMatrix< FieldMatrix< T, n, m >, A > >::UMFPack ( const Matrix matrix,
int  verbose = 0 
)
inline

Construct a solver object from a BCRSMatrix.

This computes the matrix decomposition, and may take a long time (and use a lot of memory).

Parameters
mat_the matrix to solve for
verbose[0..2] set the verbosity level, defaults to 0
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 21, 23:30, 2024)