Dune Core Modules (2.3.1)

umfpack.hh
Go to the documentation of this file.
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 #ifndef DUNE_UMFPACK_HH
4 #define DUNE_UMFPACK_HH
5 
6 #if HAVE_UMFPACK || defined DOXYGEN
7 
8 #include<complex>
9 #include<type_traits>
10 
11 #include<umfpack.h>
12 
14 #include<dune/common/fmatrix.hh>
15 #include<dune/common/fvector.hh>
16 #include<dune/common/unused.hh>
18 #include<dune/istl/solvers.hh>
20 
21 #include"colcompmatrix.hh"
22 
23 
24 namespace Dune {
36  // FORWARD DECLARATIONS
37  template<class M, class T, class TM, class TD, class TA>
38  class SeqOverlappingSchwarz;
39 
40  template<class T, bool tag>
41  struct SeqOverlappingSchwarzAssemblerHelper;
42 
48  template<class Matrix>
49  class UMFPack
50  {};
51 
52  // wrapper class for C-Function Calls in the backend. Choose the right function namespace
53  // depending on the template parameter used.
54  template<typename T>
55  struct UMFPackMethodChooser
56  {};
57 
58  template<>
59  struct UMFPackMethodChooser<double>
60  {
61  template<typename... A>
62  static void defaults(A... args)
63  {
64  umfpack_di_defaults(args...);
65  }
66  template<typename... A>
67  static void free_numeric(A... args)
68  {
69  umfpack_di_free_numeric(args...);
70  }
71  template<typename... A>
72  static void free_symbolic(A... args)
73  {
74  umfpack_di_free_symbolic(args...);
75  }
76  template<typename... A>
77  static int load_numeric(A... args)
78  {
79  return umfpack_di_load_numeric(args...);
80  }
81  template<typename... A>
82  static void numeric(A... args)
83  {
84  umfpack_di_numeric(args...);
85  }
86  template<typename... A>
87  static void report_info(A... args)
88  {
89  umfpack_di_report_info(args...);
90  }
91  template<typename... A>
92  static void report_status(A... args)
93  {
94  umfpack_di_report_status(args...);
95  }
96  template<typename... A>
97  static int save_numeric(A... args)
98  {
99  return umfpack_di_save_numeric(args...);
100  }
101  template<typename... A>
102  static void solve(A... args)
103  {
104  umfpack_di_solve(args...);
105  }
106  template<typename... A>
107  static void symbolic(A... args)
108  {
109  umfpack_di_symbolic(args...);
110  }
111  };
112 
113  template<>
114  struct UMFPackMethodChooser<std::complex<double> >
115  {
116  template<typename... A>
117  static void defaults(A... args)
118  {
119  umfpack_zi_defaults(args...);
120  }
121  template<typename... A>
122  static void free_numeric(A... args)
123  {
124  umfpack_zi_free_numeric(args...);
125  }
126  template<typename... A>
127  static void free_symbolic(A... args)
128  {
129  umfpack_zi_free_symbolic(args...);
130  }
131  template<typename... A>
132  static int load_numeric(A... args)
133  {
134  return umfpack_zi_load_numeric(args...);
135  }
136  template<typename... A>
137  static void numeric(const int* cs, const int* ri, const double* val, A... args)
138  {
139  umfpack_zi_numeric(cs,ri,val,NULL,args...);
140  }
141  template<typename... A>
142  static void report_info(A... args)
143  {
144  umfpack_zi_report_info(args...);
145  }
146  template<typename... A>
147  static void report_status(A... args)
148  {
149  umfpack_zi_report_status(args...);
150  }
151  template<typename... A>
152  static int save_numeric(A... args)
153  {
154  return umfpack_zi_save_numeric(args...);
155  }
156  template<typename... A>
157  static void solve(int m, const int* cs, const int* ri, std::complex<double>* val, double* x, const double* b,A... args)
158  {
159  const double* cval = reinterpret_cast<const double*>(val);
160  umfpack_zi_solve(m,cs,ri,cval,NULL,x,NULL,b,NULL,args...);
161  }
162  template<typename... A>
163  static void symbolic(int m, int n, const int* cs, const int* ri, const double* val, A... args)
164  {
165  umfpack_zi_symbolic(m,n,cs,ri,val,NULL,args...);
166  }
167  };
168 
177  template<typename T, typename A, int n, int m>
178  class UMFPack<BCRSMatrix<FieldMatrix<T,n,m>,A > >
179  : public InverseOperator<
180  BlockVector<FieldVector<T,m>,
181  typename A::template rebind<FieldVector<T,m> >::other>,
182  BlockVector<FieldVector<T,n>,
183  typename A::template rebind<FieldVector<T,n> >::other> >
184  {
185  public:
194  typedef Dune::BlockVector<
196  typename A::template rebind<FieldVector<T,m> >::other> domain_type;
198  typedef Dune::BlockVector<
200  typename A::template rebind<FieldVector<T,n> >::other> range_type;
201 
206  UMFPack(const Matrix& mat_, int verbose=0) : mat_is_loaded(false)
207  {
208  //check whether T is a supported type
209  static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
210  "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
211  Caller::defaults(UMF_Control);
212  setVerbosity(verbose);
213  setMatrix(mat_);
214  }
215 
220  UMFPack(const Matrix& mat_, int verbose, bool) : mat_is_loaded(false)
221  {
222  //check whether T is a supported type
223  static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
224  "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
225  Caller::defaults(UMF_Control);
226  setVerbosity(verbose);
227  setMatrix(mat_);
228  }
229 
232  UMFPack() : mat_is_loaded(false), verbose(0)
233  {
234  //check whether T is a supported type
235  static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
236  "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
237  Caller::defaults(UMF_Control);
238  }
239 
249  UMFPack(const Matrix& mat_, const char* file, int verbose=0)
250  {
251  //check whether T is a supported type
252  static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
253  "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
254  Caller::defaults(UMF_Control);
255  setVerbosity(verbose);
256  int errcode = Caller::load_numeric(&UMF_Numeric, const_cast<char*>(file));
257  if ((errcode == UMFPACK_ERROR_out_of_memory) || (errcode == UMFPACK_ERROR_file_IO))
258  {
259  mat_is_loaded = false;
260  setMatrix(mat_);
261  saveDecomposition(file);
262  }
263  else
264  {
265  mat_is_loaded = true;
266  std::cout << "UMFPack decomposition successfully loaded from " << file << std::endl;
267  }
268  }
269 
276  UMFPack(const char* file, int verbose=0)
277  {
278  //check whether T is a supported type
279  static_assert((std::is_same<T,double>::value) || (std::is_same<T,std::complex<double> >::value),
280  "Unsupported Type in UMFPack (only double and std::complex<double> supported)");
281  Caller::defaults(UMF_Control);
282  int errcode = Caller::load_numeric(&UMF_Numeric, const_cast<char*>(file));
283  if (errcode == UMFPACK_ERROR_out_of_memory)
284  DUNE_THROW(Dune::Exception, "ran out of memory while loading UMFPack decomposition");
285  if (errcode == UMFPACK_ERROR_file_IO)
286  DUNE_THROW(Dune::Exception, "IO error while loading UMFPack decomposition");
287  mat_is_loaded = true;
288  std::cout << "UMFPack decomposition successfully loaded from " << file << std::endl;
289  setVerbosity(verbose);
290  }
291 
292  virtual ~UMFPack()
293  {
294  if ((mat.N() + mat.M() > 0) || (mat_is_loaded))
295  free();
296  }
297 
302  {
303  double UMF_Apply_Info[UMFPACK_INFO];
304  Caller::solve(UMFPACK_A,
305  mat.getColStart(),
306  mat.getRowIndex(),
307  mat.getValues(),
308  reinterpret_cast<double*>(&x[0]),
309  reinterpret_cast<double*>(&b[0]),
310  UMF_Numeric,
311  UMF_Control,
312  UMF_Apply_Info);
313 
314  //this is a direct solver
315  res.iterations = 1;
316  res.converged = true;
317 
318  printOnApply(UMF_Apply_Info);
319  }
320 
324  virtual void apply (domain_type& x, range_type& b, double reduction, InverseOperatorResult& res)
325  {
326  DUNE_UNUSED_PARAMETER(reduction);
327  apply(x,b,res);
328  }
329 
335  void apply(T* x, T* b)
336  {
337  double UMF_Apply_Info[UMFPACK_INFO];
338  Caller::solve(UMFPACK_A,
339  mat.getColStart(),
340  mat.getRowIndex(),
341  mat.getValues(),
342  x,
343  b,
344  UMF_Numeric,
345  UMF_Control,
346  UMF_Apply_Info);
347  printOnApply(UMF_Apply_Info);
348  }
349 
361  void setOption(unsigned int option, double value)
362  {
363  if (option >= UMFPACK_CONTROL)
364  DUNE_THROW(RangeError, "Requested non-existing UMFPack option");
365 
366  UMF_Control[option] = value;
367  }
368 
372  void saveDecomposition(const char* file)
373  {
374  int errcode = Caller::save_numeric(UMF_Numeric, const_cast<char*>(file));
375  if (errcode != UMFPACK_OK)
376  DUNE_THROW(Dune::Exception,"IO ERROR while trying to save UMFPack decomposition");
377  }
378 
380  void setMatrix(const Matrix& _mat)
381  {
382  if ((mat.N() + mat.M() > 0) || (mat_is_loaded))
383  free();
384  mat = _mat;
385  decompose();
386  }
387 
388  template<class S>
389  void setSubMatrix(const Matrix& _mat, const S& rowIndexSet)
390  {
391  if ((mat.N() + mat.M() > 0) || (mat_is_loaded))
392  free();
393  mat.setMatrix(_mat,rowIndexSet);
394  decompose();
395  }
396 
404  void setVerbosity(int v)
405  {
406  verbose = v;
407  // set the verbosity level in UMFPack
408  if (verbose == 0)
409  UMF_Control[UMFPACK_PRL] = 1;
410  if (verbose == 1)
411  UMF_Control[UMFPACK_PRL] = 2;
412  if (verbose == 2)
413  UMF_Control[UMFPACK_PRL] = 4;
414  }
415 
420  void free()
421  {
422  if (!mat_is_loaded)
423  {
424  Caller::free_symbolic(&UMF_Symbolic);
425  mat.free();
426  }
427  Caller::free_numeric(&UMF_Numeric);
428  mat_is_loaded = false;
429  }
430 
431  const char* name() { return "UMFPACK"; }
432 
433  private:
434  typedef typename Dune::UMFPackMethodChooser<T> Caller;
435 
436  template<class M,class X, class TM, class TD, class T1>
437  friend class SeqOverlappingSchwarz;
438  friend struct SeqOverlappingSchwarzAssemblerHelper<UMFPack<Matrix>,true>;
439 
441  void decompose()
442  {
443  double UMF_Decomposition_Info[UMFPACK_INFO];
444  Caller::symbolic(static_cast<int>(mat.N()),
445  static_cast<int>(mat.N()),
446  mat.getColStart(),
447  mat.getRowIndex(),
448  reinterpret_cast<double*>(mat.getValues()),
449  &UMF_Symbolic,
450  UMF_Control,
451  UMF_Decomposition_Info);
452  Caller::numeric(mat.getColStart(),
453  mat.getRowIndex(),
454  reinterpret_cast<double*>(mat.getValues()),
455  UMF_Symbolic,
456  &UMF_Numeric,
457  UMF_Control,
458  UMF_Decomposition_Info);
459  Caller::report_status(UMF_Control,UMF_Decomposition_Info[UMFPACK_STATUS]);
460  if (verbose == 1)
461  {
462  std::cout << "[UMFPack Decomposition]" << std::endl;
463  std::cout << "Wallclock Time taken: " << UMF_Decomposition_Info[UMFPACK_NUMERIC_WALLTIME] << " (CPU Time: " << UMF_Decomposition_Info[UMFPACK_NUMERIC_TIME] << ")" << std::endl;
464  std::cout << "Flops taken: " << UMF_Decomposition_Info[UMFPACK_FLOPS] << std::endl;
465  std::cout << "Peak Memory Usage: " << UMF_Decomposition_Info[UMFPACK_PEAK_MEMORY]*UMF_Decomposition_Info[UMFPACK_SIZE_OF_UNIT] << " bytes" << std::endl;
466  std::cout << "Condition number estimate: " << 1./UMF_Decomposition_Info[UMFPACK_RCOND] << std::endl;
467  std::cout << "Numbers of non-zeroes in decomposition: L: " << UMF_Decomposition_Info[UMFPACK_LNZ] << " U: " << UMF_Decomposition_Info[UMFPACK_UNZ] << std::endl;
468  }
469  if (verbose == 2)
470  {
471  Caller::report_info(UMF_Control,UMF_Decomposition_Info);
472  }
473  }
474 
475  void printOnApply(double* UMF_Info)
476  {
477  Caller::report_status(UMF_Control,UMF_Info[UMFPACK_STATUS]);
478  if (verbose > 0)
479  {
480  std::cout << "[UMFPack Solve]" << std::endl;
481  std::cout << "Wallclock Time: " << UMF_Info[UMFPACK_SOLVE_WALLTIME] << " (CPU Time: " << UMF_Info[UMFPACK_SOLVE_TIME] << ")" << std::endl;
482  std::cout << "Flops Taken: " << UMF_Info[UMFPACK_SOLVE_FLOPS] << std::endl;
483  std::cout << "Iterative Refinement steps taken: " << UMF_Info[UMFPACK_IR_TAKEN] << std::endl;
484  std::cout << "Error Estimate: " << UMF_Info[UMFPACK_OMEGA1] << " resp. " << UMF_Info[UMFPACK_OMEGA2] << std::endl;
485  }
486  }
487 
488  UMFPackMatrix mat;
489  bool mat_is_loaded;
490  int verbose;
491  void *UMF_Symbolic;
492  void *UMF_Numeric;
493  double UMF_Control[UMFPACK_CONTROL];
494  };
495 
496  template<typename T, typename A, int n, int m>
497  struct IsDirectSolver<UMFPack<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
498  {
499  enum { value=true};
500  };
501 
502  template<typename T, typename A, int n, int m>
503  struct StoresColumnCompressed<UMFPack<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
504  {
505  enum { value = true };
506  };
507 }
508 
509 #endif //HAVE_UMFPACK
510 
511 #endif //DUNE_UMFPACK_HH
Implementation of the BCRSMatrix class.
A sparse block matrix with compressed row storage.
Definition: bcrsmatrix.hh:414
A vector of blocks with memory management.
Definition: bvector.hh:254
Base class for Dune-Exceptions.
Definition: exceptions.hh:92
A dense n x m matrix.
Definition: fmatrix.hh:67
vector space out of a tensor product of fields.
Definition: fvector.hh:92
Abstract base class for all solvers.
Definition: solver.hh:79
A generic dynamic dense matrix.
Definition: matrix.hh:25
Default exception class for range errors.
Definition: exceptions.hh:280
Use the UMFPack package to directly solve linear systems – empty default class.
Definition: umfpack.hh:50
A few common exception classes.
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
#define DUNE_THROW(E, m)
Definition: exceptions.hh:244
void setVerbosity(int v)
sets the verbosity level for the UMFPack solver
Definition: umfpack.hh:404
UMFPack(const Matrix &mat_, const char *file, int verbose=0)
Try loading a decomposition from file and do a decomposition if unsuccessful.
Definition: umfpack.hh:249
Dune::BlockVector< FieldVector< T, m >, typename A::template rebind< FieldVector< T, m > >::other > domain_type
The type of the domain of the solver.
Definition: umfpack.hh:196
virtual void apply(domain_type &x, range_type &b, InverseOperatorResult &res)
Apply inverse operator,.
Definition: umfpack.hh:301
void setMatrix(const Matrix &_mat)
Initialize data from given matrix.
Definition: umfpack.hh:380
void free()
free allocated space.
Definition: umfpack.hh:420
UMFPack(const Matrix &mat_, int verbose, bool)
Constructor for compatibility with SuperLU standard constructor.
Definition: umfpack.hh:220
ColCompMatrixInitializer< BCRSMatrix< FieldMatrix< T, n, m >, A > > MatrixInitializer
Type of an associated initializer class.
Definition: umfpack.hh:192
void setOption(unsigned int option, double value)
Set UMFPack-specific options.
Definition: umfpack.hh:361
Dune::ColCompMatrix< Matrix > UMFPackMatrix
The corresponding SuperLU Matrix type.
Definition: umfpack.hh:190
Dune::BlockVector< FieldVector< T, n >, typename A::template rebind< FieldVector< T, n > >::other > range_type
The type of the range of the solver.
Definition: umfpack.hh:200
UMFPack(const Matrix &mat_, int verbose=0)
construct a solver object from a BCRSMatrix
Definition: umfpack.hh:206
void apply(T *x, T *b)
additional apply method with c-arrays in analogy to superlu
Definition: umfpack.hh:335
UMFPack()
default constructor
Definition: umfpack.hh:232
UMFPack(const char *file, int verbose=0)
try loading a decomposition from file
Definition: umfpack.hh:276
virtual void apply(domain_type &x, range_type &b, double reduction, InverseOperatorResult &res)
apply inverse operator, with given convergence criteria.
Definition: umfpack.hh:324
void saveDecomposition(const char *file)
saves a decomposition to a file
Definition: umfpack.hh:372
Dune namespace.
Definition: alignment.hh:14
Implementations of the inverse operator interface.
Templates characterizing the type of a solver.
Inititializer for the ColCompMatrix as needed by OverlappingSchwarz.
Definition: colcompmatrix.hh:154
Statistics about the application of an inverse operator.
Definition: solver.hh:32
int iterations
Number of iterations.
Definition: solver.hh:50
bool converged
True if convergence criterion has been met.
Definition: solver.hh:56
Definition of the DUNE_UNUSED macro for the case that config.h is not available.
#define DUNE_UNUSED_PARAMETER(parm)
A macro to mark intentional unused function parameters with.
Definition: unused.hh:18
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (May 16, 22:29, 2024)