Dune Core Modules (2.3.1)

repartition.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_REPARTITION_HH
4#define DUNE_REPARTITION_HH
5
6#include <cassert>
7#include <map>
8#include <utility>
9
10#if HAVE_PARMETIS
11// Explicitly use C linkage as scotch does not extern "C" in its headers.
12// Works because ParMETIS/METIS checks whether compiler is C++ and otherwise
13// does not use extern "C". Therfore no nested extern "C" will be created
14extern "C"
15{
16#include <parmetis.h>
17}
18#endif
19
20#include <dune/common/timer.hh>
21#include <dune/common/unused.hh>
29
32
41namespace Dune
42{
43#if HAVE_MPI
57 template<class G, class T1, class T2>
59 {
61 typedef typename IndexSet::LocalIndex::Attribute Attribute;
62
63 IndexSet& indexSet = oocomm.indexSet();
64 const typename Dune::OwnerOverlapCopyCommunication<T1,T2>::GlobalLookupIndexSet& lookup =oocomm.globalLookup();
65
66 // The type of the const vertex iterator.
67 typedef typename G::ConstVertexIterator VertexIterator;
68
69
70 std::size_t sum=0, needed = graph.noVertices()-indexSet.size();
71 std::vector<std::size_t> neededall(oocomm.communicator().size(), 0);
72
73 MPI_Allgather(&needed, 1, MPITraits<std::size_t>::getType() , &(neededall[0]), 1, MPITraits<std::size_t>::getType(), oocomm.communicator());
74 for(int i=0; i<oocomm.communicator().size(); ++i)
75 sum=sum+neededall[i]; // MAke this for generic
76
77 if(sum==0)
78 // Nothing to do
79 return;
80
81 //Compute Maximum Global Index
82 T1 maxgi=0;
83 typedef typename IndexSet::const_iterator Iterator;
84 Iterator end;
85 end = indexSet.end();
86 for(Iterator it = indexSet.begin(); it != end; ++it)
87 maxgi=std::max(maxgi,it->global());
88
89 //Process p creates global indices consecutively
90 //starting atmaxgi+\sum_{i=1}^p neededall[i]
91 // All created indices are owned by the process
92 maxgi=oocomm.communicator().max(maxgi);
93 ++maxgi; //Sart with the next free index.
94
95 for(int i=0; i<oocomm.communicator().rank(); ++i)
96 maxgi=maxgi+neededall[i]; // TODO: make this more generic
97
98 // Store the global index information for repairing the remote index information
99 std::map<int,SLList<std::pair<T1,Attribute> > > globalIndices;
100 storeGlobalIndicesOfRemoteIndices(globalIndices, oocomm.remoteIndices(), indexSet);
101 indexSet.beginResize();
102
103 for(VertexIterator vertex = graph.begin(), vend=graph.end(); vertex != vend; ++vertex) {
104 const typename IndexSet::IndexPair* pair=lookup.pair(*vertex);
105 if(pair==0) {
106 // No index yet, add new one
107 indexSet.add(maxgi, typename IndexSet::LocalIndex(*vertex, OwnerOverlapCopyAttributeSet::owner, false));
108 ++maxgi;
109 }
110 }
111
112 indexSet.endResize();
113
114 repairLocalIndexPointers(globalIndices, oocomm.remoteIndices(), indexSet);
115
116 oocomm.freeGlobalLookup();
117 oocomm.buildGlobalLookup();
118#ifdef DEBUG_REPART
119 std::cout<<"Holes are filled!"<<std::endl;
120 std::cout<<oocomm.communicator().rank()<<": "<<oocomm.indexSet()<<std::endl;
121#endif
122 }
123
124 namespace
125 {
126
127 class ParmetisDuneIndexMap
128 {
129 public:
130 template<class Graph, class OOComm>
131 ParmetisDuneIndexMap(const Graph& graph, const OOComm& com);
132 int toParmetis(int i) const
133 {
134 return duneToParmetis[i];
135 }
136 int toLocalParmetis(int i) const
137 {
138 return duneToParmetis[i]-base_;
139 }
140 int operator[](int i) const
141 {
142 return duneToParmetis[i];
143 }
144 int toDune(int i) const
145 {
146 return parmetisToDune[i];
147 }
148 std::vector<int>::size_type numOfOwnVtx() const
149 {
150 return parmetisToDune.size();
151 }
152 int* vtxDist()
153 {
154 return &vtxDist_[0];
155 }
156 int globalOwnerVertices;
157 private:
158 int base_;
159 std::vector<int> duneToParmetis;
160 std::vector<int> parmetisToDune;
161 // range of vertices for processor i: vtxdist[i] to vtxdist[i+1] (parmetis global)
162 std::vector<int> vtxDist_;
163 };
164
165 template<class G, class OOComm>
166 ParmetisDuneIndexMap::ParmetisDuneIndexMap(const G& graph, const OOComm& oocomm)
167 : duneToParmetis(graph.noVertices(), -1), vtxDist_(oocomm.communicator().size()+1)
168 {
169 int npes=oocomm.communicator().size(), mype=oocomm.communicator().rank();
170
171 typedef typename OOComm::ParallelIndexSet::const_iterator Iterator;
172 typedef typename OOComm::OwnerSet OwnerSet;
173
174 int numOfOwnVtx=0;
175 Iterator end = oocomm.indexSet().end();
176 for(Iterator index = oocomm.indexSet().begin(); index != end; ++index) {
177 if (OwnerSet::contains(index->local().attribute())) {
178 numOfOwnVtx++;
179 }
180 }
181 parmetisToDune.resize(numOfOwnVtx);
182 std::vector<int> globalNumOfVtx(npes);
183 // make this number available to all processes
184 MPI_Allgather(&numOfOwnVtx, 1, MPI_INT, &(globalNumOfVtx[0]), 1, MPI_INT, oocomm.communicator());
185
186 int base=0;
187 vtxDist_[0] = 0;
188 for(int i=0; i<npes; i++) {
189 if (i<mype) {
190 base += globalNumOfVtx[i];
191 }
192 vtxDist_[i+1] = vtxDist_[i] + globalNumOfVtx[i];
193 }
194 globalOwnerVertices=vtxDist_[npes];
195 base_=base;
196
197 // The type of the const vertex iterator.
198 typedef typename G::ConstVertexIterator VertexIterator;
199#ifdef DEBUG_REPART
200 std::cout << oocomm.communicator().rank()<<" vtxDist: ";
201 for(int i=0; i<= npes; ++i)
202 std::cout << vtxDist_[i]<<" ";
203 std::cout<<std::endl;
204#endif
205
206 // Traverse the graph and assign a new consecutive number/index
207 // starting by "base" to all owner vertices.
208 // The new index is used as the ParMETIS global index and is
209 // stored in the vector "duneToParmetis"
210 VertexIterator vend = graph.end();
211 for(VertexIterator vertex = graph.begin(); vertex != vend; ++vertex) {
212 const typename OOComm::ParallelIndexSet::IndexPair* index=oocomm.globalLookup().pair(*vertex);
213 assert(index);
214 if (OwnerSet::contains(index->local().attribute())) {
215 // assign and count the index
216 parmetisToDune[base-base_]=index->local();
217 duneToParmetis[index->local()] = base++;
218 }
219 }
220
221 // At this point, every process knows the ParMETIS global index
222 // of it's owner vertices. The next step is to get the
223 // ParMETIS global index of the overlap vertices from the
224 // associated processes. To do this, the Dune::Interface class
225 // is used.
226#ifdef DEBUG_REPART
227 std::cout <<oocomm.communicator().rank()<<": before ";
228 for(std::size_t i=0; i<duneToParmetis.size(); ++i)
229 std::cout<<duneToParmetis[i]<<" ";
230 std::cout<<std::endl;
231#endif
232 oocomm.copyOwnerToAll(duneToParmetis,duneToParmetis);
233#ifdef DEBUG_REPART
234 std::cout <<oocomm.communicator().rank()<<": after ";
235 for(std::size_t i=0; i<duneToParmetis.size(); ++i)
236 std::cout<<duneToParmetis[i]<<" ";
237 std::cout<<std::endl;
238#endif
239 }
240 }
241
242 struct RedistributeInterface
243 : public Interface
244 {
245 void setCommunicator(MPI_Comm comm)
246 {
247 communicator_=comm;
248 }
249 template<class Flags,class IS>
250 void buildSendInterface(const std::vector<int>& toPart, const IS& idxset)
251 {
252 std::map<int,int> sizes;
253
254 typedef typename IS::const_iterator IIter;
255 for(IIter i=idxset.begin(), end=idxset.end(); i!=end; ++i)
256 if(Flags::contains(i->local().attribute()))
257 ++sizes[toPart[i->local()]];
258
259 // Allocate the necessary space
260 typedef std::map<int,int>::const_iterator MIter;
261 for(MIter i=sizes.begin(), end=sizes.end(); i!=end; ++i)
262 interfaces()[i->first].first.reserve(i->second);
263
264 //Insert the interface information
265 typedef typename IS::const_iterator IIter;
266 for(IIter i=idxset.begin(), end=idxset.end(); i!=end; ++i)
267 if(Flags::contains(i->local().attribute()))
268 interfaces()[toPart[i->local()]].first.add(i->local());
269 }
270
271 void reserveSpaceForReceiveInterface(int proc, int size)
272 {
273 interfaces()[proc].second.reserve(size);
274 }
275 void addReceiveIndex(int proc, std::size_t idx)
276 {
277 interfaces()[proc].second.add(idx);
278 }
279 template<typename TG>
280 void buildReceiveInterface(std::vector<std::pair<TG,int> >& indices)
281 {
282 typedef typename std::vector<std::pair<TG,int> >::const_iterator VIter;
283 std::size_t i=0;
284 for(VIter idx=indices.begin(); idx!= indices.end(); ++idx) {
285 interfaces()[idx->second].second.add(i++);
286 }
287 }
288
289 ~RedistributeInterface()
290 {}
291
292 };
293
294 namespace
295 {
305 template<class GI>
306 void createSendBuf(std::vector<GI>& ownerVec, std::set<GI>& overlapVec, std::set<int>& neighbors, char *sendBuf, int buffersize, MPI_Comm comm) {
307 // Pack owner vertices
308 std::size_t s=ownerVec.size();
309 int pos=0;
310 if(s==0)
311 ownerVec.resize(1); // otherwise would read beyond the memory bound
312 MPI_Pack(&s, 1, MPITraits<std::size_t>::getType(), sendBuf, buffersize, &pos, comm);
313 MPI_Pack(&(ownerVec[0]), s, MPITraits<GI>::getType(), sendBuf, buffersize, &pos, comm);
314 s = overlapVec.size();
315 MPI_Pack(&s, 1, MPITraits<std::size_t>::getType(), sendBuf, buffersize, &pos, comm);
316 typedef typename std::set<GI>::iterator Iter;
317 for(Iter i=overlapVec.begin(), end= overlapVec.end(); i != end; ++i)
318 MPI_Pack(const_cast<GI*>(&(*i)), 1, MPITraits<GI>::getType(), sendBuf, buffersize, &pos, comm);
319
320 s=neighbors.size();
321 MPI_Pack(&s, 1, MPITraits<std::size_t>::getType(), sendBuf, buffersize, &pos, comm);
322 typedef typename std::set<int>::iterator IIter;
323
324 for(IIter i=neighbors.begin(), end= neighbors.end(); i != end; ++i)
325 MPI_Pack(const_cast<int*>(&(*i)), 1, MPI_INT, sendBuf, buffersize, &pos, comm);
326 }
335 template<class GI>
336 void saveRecvBuf(char *recvBuf, int bufferSize, std::vector<std::pair<GI,int> >& ownerVec,
337 std::set<GI>& overlapVec, std::set<int>& neighbors, RedistributeInterface& inf, int from, MPI_Comm comm) {
338 std::size_t size;
339 int pos=0;
340 // unpack owner vertices
341 MPI_Unpack(recvBuf, bufferSize, &pos, &size, 1, MPITraits<std::size_t>::getType(), comm);
342 inf.reserveSpaceForReceiveInterface(from, size);
343 ownerVec.reserve(ownerVec.size()+size);
344 for(; size!=0; --size) {
345 GI gi;
346 MPI_Unpack(recvBuf, bufferSize, &pos, &gi, 1, MPITraits<GI>::getType(), comm);
347 ownerVec.push_back(std::make_pair(gi,from));
348 }
349 // unpack overlap vertices
350 MPI_Unpack(recvBuf, bufferSize, &pos, &size, 1, MPITraits<std::size_t>::getType(), comm);
351 typename std::set<GI>::iterator ipos = overlapVec.begin();
352 Dune::dverb << "unpacking "<<size<<" overlap"<<std::endl;
353 for(; size!=0; --size) {
354 GI gi;
355 MPI_Unpack(recvBuf, bufferSize, &pos, &gi, 1, MPITraits<GI>::getType(), comm);
356 ipos=overlapVec.insert(ipos, gi);
357 }
358 //unpack neighbors
359 MPI_Unpack(recvBuf, bufferSize, &pos, &size, 1, MPITraits<std::size_t>::getType(), comm);
360 Dune::dverb << "unpacking "<<size<<" neighbors"<<std::endl;
361 typename std::set<int>::iterator npos = neighbors.begin();
362 for(; size!=0; --size) {
363 int n;
364 MPI_Unpack(recvBuf, bufferSize, &pos, &n, 1, MPI_INT, comm);
365 npos=neighbors.insert(npos, n);
366 }
367 }
368
382 template<typename T>
383 void getDomain(const MPI_Comm& comm, T *part, int numOfOwnVtx, int nparts, int *myDomain, std::vector<int> &domainMapping) {
384 int npes, mype;
385 MPI_Comm_size(comm, &npes);
386 MPI_Comm_rank(comm, &mype);
387 MPI_Status status;
388
389 *myDomain = -1;
390 int i=0;
391 int j=0;
392
393 std::vector<int> domain(nparts);
394 std::vector<int> assigned(npes);
395 // init
396 for (i=0; i<nparts; i++) {
397 domainMapping[i] = -1;
398 domain[i] = 0;
399 }
400 for (i=0; i<npes; i++) {
401 assigned[i] = -0;
402 }
403 // count the occurance of domains
404 for (i=0; i<numOfOwnVtx; i++) {
405 domain[part[i]]++;
406 }
407
408 int *domainMatrix = new int[npes * nparts];
409 // init
410 for(i=0; i<npes*nparts; i++) {
411 domainMatrix[i]=-1;
412 }
413
414 // init buffer with the own domain
415 int *buf = new int[nparts];
416 for (i=0; i<nparts; i++) {
417 buf[i] = domain[i];
418 domainMatrix[mype*nparts+i] = domain[i];
419 }
420 int pe=0;
421 int src = (mype-1+npes)%npes;
422 int dest = (mype+1)%npes;
423 // ring communication, we need n-1 communications for n processors
424 for (i=0; i<npes-1; i++) {
425 MPI_Sendrecv_replace(buf, nparts, MPI_INT, dest, 0, src, 0, comm, &status);
426 // pe is the process of the actual received buffer
427 pe = ((mype-1-i)+npes)%npes;
428 for(j=0; j<nparts; j++) {
429 // save the values to the domain matrix
430 domainMatrix[pe*nparts+j] = buf[j];
431 }
432 }
433 delete[] buf;
434
435 // Start the domain calculation.
436 // The process which contains the maximum number of vertices of a
437 // particular domain is selected to choose it's favorate domain
438 int maxOccurance = 0;
439 pe = -1;
440 for(i=0; i<nparts; i++) {
441 for(j=0; j<npes; j++) {
442 // process has no domain assigned
443 if (assigned[j]==0) {
444 if (maxOccurance < domainMatrix[j*nparts+i]) {
445 maxOccurance = domainMatrix[j*nparts+i];
446 pe = j;
447 }
448 }
449
450 }
451 if (pe!=-1) {
452 // process got a domain, ...
453 domainMapping[i] = pe;
454 // ...mark as assigned
455 assigned[pe] = 1;
456 if (pe==mype) {
457 *myDomain = i;
458 }
459 pe = -1;
460 }
461 maxOccurance = 0;
462 }
463
464 delete[] domainMatrix;
465
466 }
467
468 struct SortFirst
469 {
470 template<class T>
471 bool operator()(const T& t1, const T& t2) const
472 {
473 return t1<t2;
474 }
475 };
476
477
488 template<class GI>
489 void mergeVec(std::vector<std::pair<GI, int> >& ownerVec, std::set<GI>& overlapSet) {
490
491 typedef typename std::vector<std::pair<GI,int> >::const_iterator VIter;
492#ifdef DEBUG_REPART
493 // Safty check for duplicates.
494 if(ownerVec.size()>0)
495 {
496 VIter old=ownerVec.begin();
497 for(VIter i=old+1, end=ownerVec.end(); i != end; old=i++)
498 {
499 if(i->first==old->first)
500 {
501 std::cerr<<"Value at indes"<<old-ownerVec.begin()<<" is the same as at index "
502 <<i-ownerVec.begin()<<" ["<<old->first<<","<<old->second<<"]==["
503 <<i->first<<","<<i->second<<"]"<<std::endl;
504 throw "Huch!";
505 }
506 }
507 }
508
509#endif
510
511 typedef typename std::set<GI>::iterator SIter;
512 VIter v=ownerVec.begin(), vend=ownerVec.end();
513 for(SIter s=overlapSet.begin(), send=overlapSet.end(); s!=send;)
514 {
515 while(v!=vend && v->first<*s) ++v;
516 if(v!=vend && v->first==*s) {
517 // Move to the next element before erasing
518 // thus s stays valid!
519 SIter tmp=s;
520 ++s;
521 overlapSet.erase(tmp);
522 }else
523 ++s;
524 }
525 }
526
527
541 template<class OwnerSet, class Graph, class IS, class GI>
542 void getNeighbor(const Graph& g, std::vector<int>& part,
543 typename Graph::VertexDescriptor vtx, const IS& indexSet,
544 int toPe, std::set<GI>& neighbor, std::set<int>& neighborProcs) {
545 typedef typename Graph::ConstEdgeIterator Iter;
546 for(Iter edge=g.beginEdges(vtx), end=g.endEdges(vtx); edge!=end; ++edge)
547 {
548 const typename IS::IndexPair* pindex = indexSet.pair(edge.target());
549 assert(pindex);
550 if(part[pindex->local()]!=toPe || !OwnerSet::contains(pindex->local().attribute()))
551 {
552 // is sent to another process and therefore becomes overlap
553 neighbor.insert(pindex->global());
554 neighborProcs.insert(part[pindex->local()]);
555 }
556 }
557 }
558
559 template<class T, class I>
560 void my_push_back(std::vector<T>& ownerVec, const I& index, int proc)
561 {
563 ownerVec.push_back(index);
564 }
565
566 template<class T, class I>
567 void my_push_back(std::vector<std::pair<T,int> >& ownerVec, const I& index, int proc)
568 {
569 ownerVec.push_back(std::make_pair(index,proc));
570 }
571 template<class T>
572 void reserve(std::vector<T>&, RedistributeInterface&, int)
573 {}
574 template<class T>
575 void reserve(std::vector<std::pair<T,int> >& ownerVec, RedistributeInterface& redist, int proc)
576 {
577 redist.reserveSpaceForReceiveInterface(proc, ownerVec.size());
578 }
579
580
598 template<class OwnerSet, class G, class IS, class T, class GI>
599 void getOwnerOverlapVec(const G& graph, std::vector<int>& part, IS& indexSet,
600 int myPe, int toPe, std::vector<T>& ownerVec, std::set<GI>& overlapSet,
601 RedistributeInterface& redist, std::set<int>& neighborProcs) {
603 //typedef typename IndexSet::const_iterator Iterator;
604 typedef typename IS::const_iterator Iterator;
605 for(Iterator index = indexSet.begin(); index != indexSet.end(); ++index) {
606 // Only Process owner vertices, the others are not in the parmetis graph.
607 if(OwnerSet::contains(index->local().attribute()))
608 {
609 if(part[index->local()]==toPe)
610 {
611 getNeighbor<OwnerSet>(graph, part, index->local(), indexSet,
612 toPe, overlapSet, neighborProcs);
613 my_push_back(ownerVec, index->global(), toPe);
614 }
615 }
616 }
617 reserve(ownerVec, redist, toPe);
618
619 }
620
621
628 template<class F, class IS>
629 inline bool isOwner(IS& indexSet, int index) {
630
631 const typename IS::IndexPair* pindex=indexSet.pair(index);
632
633 assert(pindex);
634 return F::contains(pindex->local().attribute());
635 }
636
637
638 class BaseEdgeFunctor
639 {
640 public:
641 BaseEdgeFunctor(int* adj,const ParmetisDuneIndexMap& data)
642 : i_(), adj_(adj), data_(data)
643 {}
644
645 template<class T>
646 void operator()(const T& edge)
647 {
648 // Get the egde weight
649 // const Weight& weight=edge.weight();
650 adj_[i_] = data_.toParmetis(edge.target());
651 i_++;
652 }
653 std::size_t index()
654 {
655 return i_;
656 }
657
658 private:
659 std::size_t i_;
660 int* adj_;
661 const ParmetisDuneIndexMap& data_;
662 };
663
664 template<typename G>
665 struct EdgeFunctor
666 : public BaseEdgeFunctor
667 {
668 EdgeFunctor(int* adj, const ParmetisDuneIndexMap& data, std::size_t s)
669 : BaseEdgeFunctor(adj, data)
670 {}
671
672 int* getWeights()
673 {
674 return NULL;
675 }
676 void free(){}
677 };
678
679 template<class G, class V, class E, class VM, class EM>
680 class EdgeFunctor<Dune::Amg::PropertiesGraph<G,V,E,VM,EM> >
681 : public BaseEdgeFunctor
682 {
683 public:
684 EdgeFunctor(int* adj, const ParmetisDuneIndexMap& data, std::size_t s)
685 : BaseEdgeFunctor(adj, data)
686 {
687 weight_=new int[s];
688 }
689
690 template<class T>
691 void operator()(const T& edge)
692 {
693 weight_[index()]=edge.properties().depends() ? 3 : 1;
694 BaseEdgeFunctor::operator()(edge);
695 }
696 int* getWeights()
697 {
698 return weight_;
699 }
700 void free(){
701 if(weight_!=0) {
702 delete weight_;
703 weight_=0;
704 }
705 }
706 private:
707 int* weight_;
708 };
709
710
711
725 template<class F, class G, class IS, class EW>
726 void getAdjArrays(G& graph, IS& indexSet, int *xadj,
727 EW& ew)
728 {
729 int j=0;
730
731 // The type of the const vertex iterator.
732 typedef typename G::ConstVertexIterator VertexIterator;
733 //typedef typename IndexSet::const_iterator Iterator;
734 typedef typename IS::const_iterator Iterator;
735
736 VertexIterator vend = graph.end();
737 Iterator end;
738
739 for(VertexIterator vertex = graph.begin(); vertex != vend; ++vertex) {
740 if (isOwner<F>(indexSet,*vertex)) {
741 // The type of const edge iterator.
742 typedef typename G::ConstEdgeIterator EdgeIterator;
743 EdgeIterator eend = vertex.end();
744 xadj[j] = ew.index();
745 j++;
746 for(EdgeIterator edge = vertex.begin(); edge != eend; ++edge) {
747 ew(edge);
748 }
749 }
750 }
751 xadj[j] = ew.index();
752 }
753 } // end anonymous namespace
754
755 template<class G, class T1, class T2>
756 bool buildCommunication(const G& graph, std::vector<int>& realparts,
759 RedistributeInterface& redistInf,
760 bool verbose=false);
761#if HAVE_PARMETIS
762#if PARMETIS_MAJOR_VERSION > 3
763 typedef idx_t idxtype;
764#elif defined(METISNAMEL)
765 typedef int idxtype;
766#else
767 typedef std::size_t idxtype;
768#endif
769
770 extern "C"
771 {
772 // backwards compatibility to parmetis < 4.0.0
773 void METIS_PartGraphKway(int *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt,
774 idxtype *adjwgt, int *wgtflag, int *numflag, int *nparts,
775 int *options, int *edgecut, idxtype *part);
776
777 void METIS_PartGraphRecursive(int *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt,
778 idxtype *adjwgt, int *wgtflag, int *numflag, int *nparts,
779 int *options, int *edgecut, idxtype *part);
780 }
781#else
782 typedef std::size_t idxtype;
783#endif // HAVE_PARMETIS
784
785 template<class S, class T>
786 inline void print_carray(S& os, T* array, std::size_t l)
787 {
788 for(T *cur=array, *end=array+l; cur!=end; ++cur)
789 os<<*cur<<" ";
790 }
791
792 inline bool isValidGraph(std::size_t noVtx, std::size_t gnoVtx, idxtype noEdges, idxtype* xadj,
793 idxtype* adjncy, bool checkSymmetry)
794 {
795 bool correct=true;
796
797 for(idxtype vtx=0; vtx<(idxtype)noVtx; ++vtx) {
798 if(xadj[vtx]>noEdges||xadj[vtx]<0) {
799 std::cerr <<"Check graph: xadj["<<vtx<<"]="<<xadj[vtx]<<" (>"
800 <<noEdges<<") out of range!"<<std::endl;
801 correct=false;
802 }
803 if(xadj[vtx+1]>noEdges||xadj[vtx+1]<0) {
804 std::cerr <<"Check graph: xadj["<<vtx+1<<"]="<<xadj[vtx+1]<<" (>"
805 <<noEdges<<") out of range!"<<std::endl;
806 correct=false;
807 }
808 // Check numbers in adjncy
809 for(idxtype i=xadj[vtx]; i< xadj[vtx+1]; ++i) {
810 if(adjncy[i]<0||((std::size_t)adjncy[i])>gnoVtx) {
811 std::cerr<<" Edge "<<adjncy[i]<<" out of range ["<<0<<","<<noVtx<<")"
812 <<std::endl;
813 correct=false;
814 }
815 }
816 if(checkSymmetry) {
817 for(idxtype i=xadj[vtx]; i< xadj[vtx+1]; ++i) {
818 idxtype target=adjncy[i];
819 // search for symmetric edge
820 int found=0;
821 for(idxtype j=xadj[target]; j< xadj[target+1]; ++j)
822 if(adjncy[j]==vtx)
823 found++;
824 if(found!=1) {
825 std::cerr<<"Edge ("<<target<<","<<vtx<<") "<<i<<" time"<<std::endl;
826 correct=false;
827 }
828 }
829 }
830 }
831 return correct;
832 }
833
834 template<class M, class T1, class T2>
835 bool commGraphRepartition(const M& mat, Dune::OwnerOverlapCopyCommunication<T1,T2>& oocomm, int nparts,
837 RedistributeInterface& redistInf,
838 bool verbose=false)
839 {
840 if(verbose && oocomm.communicator().rank()==0)
841 std::cout<<"Repartitioning from "<<oocomm.communicator().size()
842 <<" to "<<nparts<<" parts"<<std::endl;
843 Timer time;
844 int rank = oocomm.communicator().rank();
845#if !HAVE_PARMETIS
846 int* part = new int[1];
847 part[0]=0;
848#else
849 idxtype* part = new idxtype[1]; // where all our data moves to
850
851 if(nparts>1) {
852
853 part[0]=rank;
854
855 { // sublock for automatic memory deletion
856
857 // Build the graph of the communication scheme and create an appropriate indexset.
858 // calculate the neighbour vertices
859 int noNeighbours = oocomm.remoteIndices().neighbours();
861 typedef typename RemoteIndices::const_iterator
862 NeighbourIterator;
863
864 for(NeighbourIterator n= oocomm.remoteIndices().begin(); n != oocomm.remoteIndices().end();
865 ++n)
866 if(n->first==rank) {
867 //do not include ourselves.
868 --noNeighbours;
869 break;
870 }
871
872 // A parmetis graph representing the communication graph.
873 // The diagonal entries are the number of nodes on the process.
874 // The offdiagonal entries are the number of edges leading to other processes.
875
876 idxtype *xadj=new idxtype[2];
877 idxtype *vtxdist=new idxtype[oocomm.communicator().size()+1];
878 idxtype *adjncy=new idxtype[noNeighbours];
879#ifdef USE_WEIGHTS
880 idxtype *vwgt = 0;
881 idxtype *adjwgt = 0;
882#endif
883
884 // each process has exactly one vertex!
885 for(int i=0; i<oocomm.communicator().size(); ++i)
886 vtxdist[i]=i;
887 vtxdist[oocomm.communicator().size()]=oocomm.communicator().size();
888
889 xadj[0]=0;
890 xadj[1]=noNeighbours;
891
892 // count edges to other processor
893 // a vector mapping the index to the owner
894 // std::vector<int> owner(mat.N(), oocomm.communicator().rank());
895 // for(NeighbourIterator n= oocomm.remoteIndices().begin(); n != oocomm.remoteIndices().end();
896 // ++n)
897 // {
898 // if(n->first!=oocomm.communicator().rank()){
899 // typedef typename RemoteIndices::RemoteIndexList RIList;
900 // const RIList& rlist = *(n->second.first);
901 // typedef typename RIList::const_iterator LIter;
902 // for(LIter entry=rlist.begin(); entry!=rlist.end(); ++entry){
903 // if(entry->attribute()==OwnerOverlapCopyAttributeSet::owner)
904 // owner[entry->localIndexPair().local()] = n->first;
905 // }
906 // }
907 // }
908
909 // std::map<int,idxtype> edgecount; // edges to other processors
910 // typedef typename M::ConstRowIterator RIter;
911 // typedef typename M::ConstColIterator CIter;
912
913 // // calculate edge count
914 // for(RIter row=mat.begin(), endr=mat.end(); row != endr; ++row)
915 // if(owner[row.index()]==OwnerOverlapCopyAttributeSet::owner)
916 // for(CIter entry= row->begin(), ende = row->end(); entry != ende; ++entry)
917 // ++edgecount[owner[entry.index()]];
918
919 // setup edge and weight pattern
920 typedef typename RemoteIndices::const_iterator NeighbourIterator;
921
922 idxtype* adjp=adjncy;
923
924#ifdef USE_WEIGHTS
925 vwgt = new idxtype[1];
926 vwgt[0]= mat.N(); // weight is numer of rows TODO: Should actually be the nonzeros.
927
928 adjwgt = new idxtype[noNeighbours];
929 idxtype* adjwp=adjwgt;
930#endif
931
932 for(NeighbourIterator n= oocomm.remoteIndices().begin(); n != oocomm.remoteIndices().end();
933 ++n)
934 if(n->first != rank) {
935 *adjp=n->first;
936 ++adjp;
937#ifdef USE_WEIGHTS
938 *adjwp=1; //edgecount[n->first];
939 ++adjwp;
940#endif
941 }
942 assert(isValidGraph(vtxdist[rank+1]-vtxdist[rank],
943 vtxdist[oocomm.communicator().size()],
944 noNeighbours, xadj, adjncy, false));
945
946 int wgtflag=0, numflag=0, edgecut;
947#ifdef USE_WEIGHTS
948 wgtflag=3;
949#endif
950 float *tpwgts = new float[nparts];
951 for(int i=0; i<nparts; ++i)
952 tpwgts[i]=1.0/nparts;
953 int options[5] ={ 0,1,15,0,0};
954 MPI_Comm comm=oocomm.communicator();
955
956 Dune::dinfo<<rank<<" vtxdist: ";
957 print_carray(Dune::dinfo, vtxdist, oocomm.communicator().size()+1);
958 Dune::dinfo<<std::endl<<rank<<" xadj: ";
959 print_carray(Dune::dinfo, xadj, 2);
960 Dune::dinfo<<std::endl<<rank<<" adjncy: ";
961 print_carray(Dune::dinfo, adjncy, noNeighbours);
962
963#ifdef USE_WEIGHTS
964 Dune::dinfo<<std::endl<<rank<<" vwgt: ";
965 print_carray(Dune::dinfo, vwgt, 1);
966 Dune::dinfo<<std::endl<<rank<<" adwgt: ";
967 print_carray(Dune::dinfo, adjwgt, noNeighbours);
968#endif
969 Dune::dinfo<<std::endl;
970 oocomm.communicator().barrier();
971 if(verbose && oocomm.communicator().rank()==0)
972 std::cout<<"Creating comm graph took "<<time.elapsed()<<std::endl;
973 time.reset();
974
975#ifdef PARALLEL_PARTITION
976 float ubvec = 1.15;
977 int ncon=1;
978
979 //=======================================================
980 // ParMETIS_V3_PartKway
981 //=======================================================
982 ParMETIS_V3_PartKway(vtxdist, xadj, adjncy,
983 vwgt, adjwgt, &wgtflag,
984 &numflag, &ncon, &nparts, tpwgts, &ubvec, options, &edgecut, part,
985 &comm);
986 if(verbose && oocomm.communicator().rank()==0)
987 std::cout<<"ParMETIS took "<<time.elapsed()<<std::endl;
988 time.reset();
989#else
990 Timer time1;
991 std::size_t gnoedges=0;
992 int* noedges = 0;
993 noedges = new int[oocomm.communicator().size()];
994 Dune::dverb<<"noNeighbours: "<<noNeighbours<<std::endl;
995 // gather number of edges for each vertex.
996 MPI_Allgather(&noNeighbours,1,MPI_INT,noedges,1, MPI_INT,oocomm.communicator());
997
998 if(verbose && oocomm.communicator().rank()==0)
999 std::cout<<"Gathering noedges took "<<time1.elapsed()<<std::endl;
1000 time1.reset();
1001
1002 int noVertices = vtxdist[oocomm.communicator().size()];
1003 idxtype *gxadj = 0;
1004 idxtype *gvwgt = 0;
1005 idxtype *gadjncy = 0;
1006 idxtype *gadjwgt = 0;
1007 idxtype *gpart = 0;
1008 int* displ = 0;
1009 int* noxs = 0;
1010 int* xdispl = 0; // displacement for xadj
1011 int* novs = 0;
1012 int* vdispl=0; // real vertex displacement
1013#ifdef USE_WEIGHTS
1014 std::size_t localNoVtx=vtxdist[rank+1]-vtxdist[rank];
1015#endif
1016 std::size_t gxadjlen = vtxdist[oocomm.communicator().size()]-vtxdist[0]+oocomm.communicator().size();
1017
1018 {
1019 Dune::dinfo<<"noedges: ";
1020 print_carray(Dune::dinfo, noedges, oocomm.communicator().size());
1021 Dune::dinfo<<std::endl;
1022 displ = new int[oocomm.communicator().size()];
1023 xdispl = new int[oocomm.communicator().size()];
1024 noxs = new int[oocomm.communicator().size()];
1025 vdispl = new int[oocomm.communicator().size()];
1026 novs = new int[oocomm.communicator().size()];
1027
1028 for(int i=0; i < oocomm.communicator().size(); ++i) {
1029 noxs[i]=vtxdist[i+1]-vtxdist[i]+1;
1030 novs[i]=vtxdist[i+1]-vtxdist[i];
1031 }
1032
1033 idxtype *so= vtxdist;
1034 int offset = 0;
1035 for(int *xcurr = xdispl, *vcurr = vdispl, *end=vdispl+oocomm.communicator().size();
1036 vcurr!=end; ++vcurr, ++xcurr, ++so, ++offset) {
1037 *vcurr = *so;
1038 *xcurr = offset + *so;
1039 }
1040
1041 int *pdispl =displ;
1042 int cdispl = 0;
1043 *pdispl = 0;
1044 for(int *curr=noedges, *end=noedges+oocomm.communicator().size()-1;
1045 curr!=end; ++curr) {
1046 ++pdispl; // next displacement
1047 cdispl += *curr; // next value
1048 *pdispl = cdispl;
1049 }
1050 Dune::dinfo<<"displ: ";
1051 print_carray(Dune::dinfo, displ, oocomm.communicator().size());
1052 Dune::dinfo<<std::endl;
1053
1054 // calculate global number of edges
1055 // It is bigger than the actual one as we habe size-1 additional end entries
1056 for(int *curr=noedges, *end=noedges+oocomm.communicator().size();
1057 curr!=end; ++curr)
1058 gnoedges += *curr;
1059
1060 // alocate gobal graph
1061 Dune::dinfo<<"gxadjlen: "<<gxadjlen<<" noVertices: "<<noVertices
1062 <<" gnoedges: "<<gnoedges<<std::endl;
1063 gxadj = new idxtype[gxadjlen];
1064 gpart = new idxtype[noVertices];
1065#ifdef USE_WEIGHTS
1066 gvwgt = new idxtype[noVertices];
1067 gadjwgt = new idxtype[gnoedges];
1068#endif
1069 gadjncy = new idxtype[gnoedges];
1070 }
1071
1072 if(verbose && oocomm.communicator().rank()==0)
1073 std::cout<<"Preparing global graph took "<<time1.elapsed()<<std::endl;
1074 time1.reset();
1075 // Communicate data
1076
1077 MPI_Allgatherv(xadj,2,MPITraits<idxtype>::getType(),
1078 gxadj,noxs,xdispl,MPITraits<idxtype>::getType(),
1079 comm);
1080 MPI_Allgatherv(adjncy,noNeighbours,MPITraits<idxtype>::getType(),
1081 gadjncy,noedges,displ,MPITraits<idxtype>::getType(),
1082 comm);
1083#ifdef USE_WEIGHTS
1084 MPI_Allgatherv(adjwgt,noNeighbours,MPITraits<idxtype>::getType(),
1085 gadjwgt,noedges,displ,MPITraits<idxtype>::getType(),
1086 comm);
1087 MPI_Allgatherv(vwgt,localNoVtx,MPITraits<idxtype>::getType(),
1088 gvwgt,novs,vdispl,MPITraits<idxtype>::getType(),
1089 comm);
1090#endif
1091 if(verbose && oocomm.communicator().rank()==0)
1092 std::cout<<"Gathering global graph data took "<<time1.elapsed()<<std::endl;
1093 time1.reset();
1094
1095 {
1096 // create the real gxadj array
1097 // i.e. shift entries and add displacements.
1098
1099 print_carray(Dune::dinfo, gxadj, gxadjlen);
1100
1101 int offset = 0;
1102 idxtype increment = vtxdist[1];
1103 idxtype *start=gxadj+1;
1104 for(int i=1; i<oocomm.communicator().size(); ++i) {
1105 offset+=1;
1106 int lprev = vtxdist[i]-vtxdist[i-1];
1107 int l = vtxdist[i+1]-vtxdist[i];
1108 start+=lprev;
1109 assert((start+l+offset)-gxadj<=static_cast<idxtype>(gxadjlen));
1110 increment = *(start-1);
1111 std::transform(start+offset, start+l+offset, start, std::bind2nd(std::plus<idxtype>(), increment));
1112 }
1113 Dune::dinfo<<std::endl<<"shifted xadj:";
1114 print_carray(Dune::dinfo, gxadj, noVertices+1);
1115 Dune::dinfo<<std::endl<<" gadjncy: ";
1116 print_carray(Dune::dinfo, gadjncy, gnoedges);
1117#ifdef USE_WEIGHTS
1118 Dune::dinfo<<std::endl<<" gvwgt: ";
1119 print_carray(Dune::dinfo, gvwgt, noVertices);
1120 Dune::dinfo<<std::endl<<"adjwgt: ";
1121 print_carray(Dune::dinfo, gadjwgt, gnoedges);
1122 Dune::dinfo<<std::endl;
1123#endif
1124 // everything should be fine now!!!
1125 if(verbose && oocomm.communicator().rank()==0)
1126 std::cout<<"Postprocesing global graph data took "<<time1.elapsed()<<std::endl;
1127 time1.reset();
1128#ifndef NDEBUG
1129 assert(isValidGraph(noVertices, noVertices, gnoedges,
1130 gxadj, gadjncy, true));
1131#endif
1132
1133 if(verbose && oocomm.communicator().rank()==0)
1134 std::cout<<"Creating grah one 1 process took "<<time.elapsed()<<std::endl;
1135 time.reset();
1136 options[0]=0; options[1]=1; options[2]=1; options[3]=3; options[4]=3;
1137 // Call metis
1138 METIS_PartGraphRecursive(&noVertices, gxadj, gadjncy, gvwgt, gadjwgt, &wgtflag,
1139 &numflag, &nparts, options, &edgecut, gpart);
1140
1141 if(verbose && oocomm.communicator().rank()==0)
1142 std::cout<<"METIS took "<<time.elapsed()<<std::endl;
1143 time.reset();
1144
1145 Dune::dinfo<<std::endl<<"part:";
1146 print_carray(Dune::dinfo, gpart, noVertices);
1147
1148 delete[] gxadj;
1149 delete[] gadjncy;
1150#ifdef USE_WEIGHTS
1151 delete[] gvwgt;
1152 delete[] gadjwgt;
1153#endif
1154 }
1155 // Scatter result
1156 MPI_Scatter(gpart, 1, MPITraits<idxtype>::getType(), part, 1,
1157 MPITraits<idxtype>::getType(), 0, comm);
1158
1159 {
1160 // release remaining memory
1161 delete[] gpart;
1162 delete[] noedges;
1163 delete[] displ;
1164 }
1165
1166
1167#endif
1168 delete[] xadj;
1169 delete[] vtxdist;
1170 delete[] adjncy;
1171#ifdef USE_WEIGHTS
1172 delete[] vwgt;
1173 delete[] adjwgt;
1174#endif
1175 delete[] tpwgts;
1176 }
1177 }else{
1178 part[0]=0;
1179 }
1180#endif
1181 Dune::dinfo<<" repart "<<rank <<" -> "<< part[0]<<std::endl;
1182
1183 std::vector<int> realpart(mat.N(), part[0]);
1184 delete[] part;
1185
1186 oocomm.copyOwnerToAll(realpart, realpart);
1187
1188 if(verbose && oocomm.communicator().rank()==0)
1189 std::cout<<"Scattering repartitioning took "<<time.elapsed()<<std::endl;
1190 time.reset();
1191
1192
1193 oocomm.buildGlobalLookup(mat.N());
1194 Dune::Amg::MatrixGraph<M> graph(const_cast<M&>(mat));
1195 fillIndexSetHoles(graph, oocomm);
1196 if(verbose && oocomm.communicator().rank()==0)
1197 std::cout<<"Filling index set took "<<time.elapsed()<<std::endl;
1198 time.reset();
1199
1200 if(verbose) {
1201 int noNeighbours=oocomm.remoteIndices().neighbours();
1202 noNeighbours = oocomm.communicator().sum(noNeighbours)
1203 / oocomm.communicator().size();
1204 if(oocomm.communicator().rank()==0)
1205 std::cout<<"Average no neighbours was "<<noNeighbours<<std::endl;
1206 }
1207 bool ret = buildCommunication(graph, realpart, oocomm, outcomm, redistInf,
1208 verbose);
1209 if(verbose && oocomm.communicator().rank()==0)
1210 std::cout<<"Building index sets took "<<time.elapsed()<<std::endl;
1211 time.reset();
1212
1213
1214 return ret;
1215
1216 }
1217
1232 template<class G, class T1, class T2>
1233 bool graphRepartition(const G& graph, Dune::OwnerOverlapCopyCommunication<T1,T2>& oocomm, int nparts,
1235 RedistributeInterface& redistInf,
1236 bool verbose=false)
1237 {
1238 Timer time;
1239
1240 MPI_Comm comm=oocomm.communicator();
1241 oocomm.buildGlobalLookup(graph.noVertices());
1242 fillIndexSetHoles(graph, oocomm);
1243
1244 if(verbose && oocomm.communicator().rank()==0)
1245 std::cout<<"Filling holes took "<<time.elapsed()<<std::endl;
1246 time.reset();
1247
1248 // simple precondition checks
1249
1250#ifdef PERF_REPART
1251 // Profiling variables
1252 double t1=0.0, t2=0.0, t3=0.0, t4=0.0, tSum=0.0;
1253#endif
1254
1255
1256 // MPI variables
1257 int mype = oocomm.communicator().rank();
1258
1259 assert(nparts<=oocomm.communicator().size());
1260
1261 int myDomain = -1;
1262
1263 //
1264 // 1) Prepare the required parameters for using ParMETIS
1265 // Especially the arrays that represent the graph must be
1266 // generated by the DUNE Graph and IndexSet input variables.
1267 // These are the arrays:
1268 // - vtxdist
1269 // - xadj
1270 // - adjncy
1271 //
1272 //
1273#ifdef PERF_REPART
1274 // reset timer for step 1)
1275 t1=MPI_Wtime();
1276#endif
1277
1278
1279 typedef typename Dune::OwnerOverlapCopyCommunication<T1,T2> OOComm;
1280 typedef typename OOComm::OwnerSet OwnerSet;
1281
1282 // Create the vtxdist array and parmetisVtxMapping.
1283 // Global communications are necessary
1284 // The parmetis global identifiers for the owner vertices.
1285 ParmetisDuneIndexMap indexMap(graph,oocomm);
1286#if HAVE_PARMETIS
1287 idxtype *part = new idxtype[indexMap.numOfOwnVtx()];
1288#else
1289 std::size_t *part = new std::size_t[indexMap.numOfOwnVtx()];
1290#endif
1291 for(std::size_t i=0; i < indexMap.numOfOwnVtx(); ++i)
1292 part[i]=mype;
1293
1294#if !HAVE_PARMETIS
1295 if(oocomm.communicator().rank()==0 && nparts>1)
1296 std::cerr<<"ParMETIS not activated. Will repartition to 1 domain instead of requested "
1297 <<nparts<<" domains."<<std::endl;
1298 nparts=1; // No parmetis available, fallback to agglomerating to 1 process
1299
1300#else
1301
1302 if(nparts>1) {
1303 // Create the xadj and adjncy arrays
1304 idxtype *xadj = new idxtype[indexMap.numOfOwnVtx()+1];
1305 idxtype *adjncy = new idxtype[graph.noEdges()];
1306 EdgeFunctor<G> ef(adjncy, indexMap, graph.noEdges());
1307 getAdjArrays<OwnerSet>(graph, oocomm.globalLookup(), xadj, ef);
1308
1309 //
1310 // 2) Call ParMETIS
1311 //
1312 //
1313 int numflag=0, wgtflag=0, options[3], edgecut=0, ncon=1;
1314 //float *tpwgts = NULL;
1315 float *tpwgts = new float[nparts];
1316 for(int i=0; i<nparts; ++i)
1317 tpwgts[i]=1.0/nparts;
1318 float ubvec[1];
1319 options[0] = 0; // 0=default, 1=options are defined in [1]+[2]
1320#ifdef DEBUG_REPART
1321 options[1] = 3; // show info: 0=no message
1322#else
1323 options[1] = 0; // show info: 0=no message
1324#endif
1325 options[2] = 1; // random number seed, default is 15
1326 wgtflag = (ef.getWeights()!=NULL) ? 1 : 0;
1327 numflag = 0;
1328 edgecut = 0;
1329 ncon=1;
1330 ubvec[0]=1.05; // recommended by ParMETIS
1331
1332#ifdef DEBUG_REPART
1333 if (mype == 0) {
1334 std::cout<<std::endl;
1335 std::cout<<"Testing ParMETIS_V3_PartKway with options[1-2] = {"
1336 <<options[1]<<" "<<options[2]<<"}, Ncon: "
1337 <<ncon<<", Nparts: "<<nparts<<std::endl;
1338 }
1339#endif
1340#ifdef PERF_REPART
1341 // stop the time for step 1)
1342 t1=MPI_Wtime()-t1;
1343 // reset timer for step 2)
1344 t2=MPI_Wtime();
1345#endif
1346
1347 if(verbose) {
1348 oocomm.communicator().barrier();
1349 if(oocomm.communicator().rank()==0)
1350 std::cout<<"Preparing for parmetis took "<<time.elapsed()<<std::endl;
1351 }
1352 time.reset();
1353
1354 //=======================================================
1355 // ParMETIS_V3_PartKway
1356 //=======================================================
1357 ParMETIS_V3_PartKway(indexMap.vtxDist(), xadj, adjncy,
1358 NULL, ef.getWeights(), &wgtflag,
1359 &numflag, &ncon, &nparts, tpwgts, ubvec, options, &edgecut, part, &const_cast<MPI_Comm&>(comm));
1360
1361
1362 delete[] xadj;
1363 delete[] adjncy;
1364 delete[] tpwgts;
1365
1366 ef.free();
1367
1368#ifdef DEBUG_REPART
1369 if (mype == 0) {
1370 std::cout<<std::endl;
1371 std::cout<<"ParMETIS_V3_PartKway reported a cut of "<<edgecut<<std::endl;
1372 std::cout<<std::endl;
1373 }
1374 std::cout<<mype<<": PARMETIS-Result: ";
1375 for(int i=0; i < indexMap.vtxDist()[mype+1]-indexMap.vtxDist()[mype]; ++i) {
1376 std::cout<<part[i]<<" ";
1377 }
1378 std::cout<<std::endl;
1379 std::cout<<"Testing ParMETIS_V3_PartKway with options[1-2] = {"
1380 <<options[1]<<" "<<options[2]<<"}, Ncon: "
1381 <<ncon<<", Nparts: "<<nparts<<std::endl;
1382#endif
1383#ifdef PERF_REPART
1384 // stop the time for step 2)
1385 t2=MPI_Wtime()-t2;
1386 // reset timer for step 3)
1387 t3=MPI_Wtime();
1388#endif
1389
1390
1391 if(verbose) {
1392 oocomm.communicator().barrier();
1393 if(oocomm.communicator().rank()==0)
1394 std::cout<<"Parmetis took "<<time.elapsed()<<std::endl;
1395 }
1396 time.reset();
1397 }else
1398#endif
1399 {
1400 // Everything goes to process 0!
1401 for(std::size_t i=0; i<indexMap.numOfOwnVtx(); ++i)
1402 part[i]=0;
1403 }
1404
1405
1406 //
1407 // 3) Find a optimal domain based on the ParMETIS repartitioning
1408 // result
1409 //
1410
1411 std::vector<int> domainMapping(nparts);
1412 if(nparts>1)
1413 getDomain(comm, part, indexMap.numOfOwnVtx(), nparts, &myDomain, domainMapping);
1414 else
1415 domainMapping[0]=0;
1416
1417#ifdef DEBUG_REPART
1418 std::cout<<mype<<": myDomain: "<<myDomain<<std::endl;
1419 std::cout<<mype<<": DomainMapping: ";
1420 for(int j=0; j<nparts; j++) {
1421 std::cout<<" do: "<<j<<" pe: "<<domainMapping[j]<<" ";
1422 }
1423 std::cout<<std::endl;
1424#endif
1425
1426 // Make a domain mapping for the indexset and translate
1427 //domain number to real process number
1428 // domainMapping is the one of parmetis, that is without
1429 // the overlap/copy vertices
1430 std::vector<int> setPartition(oocomm.indexSet().size(), -1);
1431
1432 typedef typename OOComm::ParallelIndexSet::const_iterator Iterator;
1433 std::size_t i=0; // parmetis index
1434 for(Iterator index = oocomm.indexSet().begin(); index != oocomm.indexSet().end(); ++index)
1435 if(OwnerSet::contains(index->local().attribute())) {
1436 setPartition[index->local()]=domainMapping[part[i++]];
1437 }
1438
1439 delete[] part;
1440 oocomm.copyOwnerToAll(setPartition, setPartition);
1441 // communication only needed for ALU
1442 // (ghosts with same global id as owners on the same process)
1443 if (oocomm.getSolverCategory() ==
1444 static_cast<int>(SolverCategory::nonoverlapping))
1445 oocomm.copyCopyToAll(setPartition, setPartition);
1446 bool ret = buildCommunication(graph, setPartition, oocomm, outcomm, redistInf,
1447 verbose);
1448 if(verbose) {
1449 oocomm.communicator().barrier();
1450 if(oocomm.communicator().rank()==0)
1451 std::cout<<"Creating indexsets took "<<time.elapsed()<<std::endl;
1452 }
1453 return ret;
1454 }
1455
1456
1457
1458 template<class G, class T1, class T2>
1459 bool buildCommunication(const G& graph,
1460 std::vector<int>& setPartition, Dune::OwnerOverlapCopyCommunication<T1,T2>& oocomm,
1462 RedistributeInterface& redistInf,
1463 bool verbose)
1464 {
1465 typedef typename Dune::OwnerOverlapCopyCommunication<T1,T2> OOComm;
1466 typedef typename OOComm::OwnerSet OwnerSet;
1467
1468 Timer time;
1469
1470 // Build the send interface
1471 redistInf.buildSendInterface<OwnerSet>(setPartition, oocomm.indexSet());
1472
1473#ifdef PERF_REPART
1474 // stop the time for step 3)
1475 t3=MPI_Wtime()-t3;
1476 // reset timer for step 4)
1477 t4=MPI_Wtime();
1478#endif
1479
1480
1481 //
1482 // 4) Create the output IndexSet and RemoteIndices
1483 // 4.1) Determine the "send to" and "receive from" relation
1484 // according to the new partition using a MPI ring
1485 // communication.
1486 //
1487 // 4.2) Depends on the "send to" and "receive from" vector,
1488 // the processes will exchange the vertices each other
1489 //
1490 // 4.3) Create the IndexSet, RemoteIndices and the new MPI
1491 // communicator
1492 //
1493
1494 //
1495 // 4.1) Let's start...
1496 //
1497 int npes = oocomm.communicator().size();
1498 int *sendTo = 0;
1499 int noSendTo = 0;
1500 std::set<int> recvFrom;
1501
1502 // the max number of vertices is stored in the sendTo buffer,
1503 // not the number of vertices to send! Because the max number of Vtx
1504 // is used as the fixed buffer size by the MPI send/receive calls
1505
1506 typedef typename std::vector<int>::const_iterator VIter;
1507 int mype = oocomm.communicator().rank();
1508
1509 {
1510 std::set<int> tsendTo;
1511 for(VIter i=setPartition.begin(), iend = setPartition.end(); i!=iend; ++i)
1512 tsendTo.insert(*i);
1513
1514 noSendTo = tsendTo.size();
1515 sendTo = new int[noSendTo];
1516 typedef std::set<int>::const_iterator iterator;
1517 int idx=0;
1518 for(iterator i=tsendTo.begin(); i != tsendTo.end(); ++i, ++idx)
1519 sendTo[idx]=*i;
1520 }
1521
1522 //
1523 int* gnoSend= new int[oocomm.communicator().size()];
1524 int* gsendToDispl = new int[oocomm.communicator().size()+1];
1525
1526 MPI_Allgather(&noSendTo, 1, MPI_INT, gnoSend, 1,
1527 MPI_INT, oocomm.communicator());
1528
1529 // calculate total receive message size
1530 int totalNoRecv = 0;
1531 for(int i=0; i<npes; ++i)
1532 totalNoRecv += gnoSend[i];
1533
1534 int *gsendTo = new int[totalNoRecv];
1535
1536 // calculate displacement for allgatherv
1537 gsendToDispl[0]=0;
1538 for(int i=0; i<npes; ++i)
1539 gsendToDispl[i+1]=gsendToDispl[i]+gnoSend[i];
1540
1541 // gather the data
1542 MPI_Allgatherv(sendTo, noSendTo, MPI_INT, gsendTo, gnoSend, gsendToDispl,
1543 MPI_INT, oocomm.communicator());
1544
1545 // Extract from which processes we will receive data
1546 for(int proc=0; proc < npes; ++proc)
1547 for(int i=gsendToDispl[proc]; i < gsendToDispl[proc+1]; ++i)
1548 if(gsendTo[i]==mype)
1549 recvFrom.insert(proc);
1550
1551 bool existentOnNextLevel = recvFrom.size()>0;
1552
1553 // Delete memory
1554 delete[] gnoSend;
1555 delete[] gsendToDispl;
1556 delete[] gsendTo;
1557
1558
1559#ifdef DEBUG_REPART
1560 if(recvFrom.size()) {
1561 std::cout<<mype<<": recvFrom: ";
1562 typedef typename std::set<int>::const_iterator siter;
1563 for(siter i=recvFrom.begin(); i!= recvFrom.end(); ++i) {
1564 std::cout<<*i<<" ";
1565 }
1566 }
1567
1568 std::cout<<std::endl<<std::endl;
1569 std::cout<<mype<<": sendTo: ";
1570 for(int i=0; i<noSendTo; i++) {
1571 std::cout<<sendTo[i]<<" ";
1572 }
1573 std::cout<<std::endl<<std::endl;
1574#endif
1575
1576 if(verbose)
1577 if(oocomm.communicator().rank()==0)
1578 std::cout<<" Communicating the receive information took "<<
1579 time.elapsed()<<std::endl;
1580 time.reset();
1581
1582 //
1583 // 4.2) Start the communication
1584 //
1585
1586 // Get all the owner and overlap vertices for myself ans save
1587 // it in the vectors myOwnerVec and myOverlapVec.
1588 // The received vertices from the other processes are simple
1589 // added to these vector.
1590 //
1591
1592
1593 typedef typename OOComm::ParallelIndexSet::GlobalIndex GI;
1594 typedef std::vector<GI> GlobalVector;
1595 std::vector<std::pair<GI,int> > myOwnerVec;
1596 std::set<GI> myOverlapSet;
1597 GlobalVector sendOwnerVec;
1598 std::set<GI> sendOverlapSet;
1599 std::set<int> myNeighbors;
1600
1601 // getOwnerOverlapVec<OwnerSet>(graph, setPartition, oocomm.globalLookup(),
1602 // mype, mype, myOwnerVec, myOverlapSet, redistInf, myNeighbors);
1603
1604 char **sendBuffers=new char*[noSendTo];
1605 MPI_Request *requests = new MPI_Request[noSendTo];
1606
1607 // Create all messages to be sent
1608 for(int i=0; i < noSendTo; ++i) {
1609 // clear the vector for sending
1610 sendOwnerVec.clear();
1611 sendOverlapSet.clear();
1612 // get all owner and overlap vertices for process j and save these
1613 // in the vectors sendOwnerVec and sendOverlapSet
1614 std::set<int> neighbors;
1615 getOwnerOverlapVec<OwnerSet>(graph, setPartition, oocomm.globalLookup(),
1616 mype, sendTo[i], sendOwnerVec, sendOverlapSet, redistInf,
1617 neighbors);
1618 // +2, we need 2 integer more for the length of each part
1619 // (owner/overlap) of the array
1620 int buffersize=0;
1621 int tsize;
1622 MPI_Pack_size(1, MPITraits<std::size_t>::getType(), oocomm.communicator(), &buffersize);
1623 MPI_Pack_size(sendOwnerVec.size(), MPITraits<GI>::getType(), oocomm.communicator(), &tsize);
1624 buffersize +=tsize;
1625 MPI_Pack_size(1, MPITraits<std::size_t>::getType(), oocomm.communicator(), &tsize);
1626 buffersize +=tsize;
1627 MPI_Pack_size(sendOverlapSet.size(), MPITraits<GI>::getType(), oocomm.communicator(), &tsize);
1628 buffersize += tsize;
1629 MPI_Pack_size(1, MPITraits<std::size_t>::getType(), oocomm.communicator(), &tsize);
1630 buffersize += tsize;
1631 MPI_Pack_size(neighbors.size(), MPI_INT, oocomm.communicator(), &tsize);
1632 buffersize += tsize;
1633
1634 sendBuffers[i] = new char[buffersize];
1635
1636#ifdef DEBUG_REPART
1637 std::cout<<mype<<" sending "<<sendOwnerVec.size()<<" owner and "<<
1638 sendOverlapSet.size()<<" overlap to "<<sendTo[i]<<" buffersize="<<buffersize<<std::endl;
1639#endif
1640 createSendBuf(sendOwnerVec, sendOverlapSet, neighbors, sendBuffers[i], buffersize, oocomm.communicator());
1641 MPI_Issend(sendBuffers[i], buffersize, MPI_PACKED, sendTo[i], 99, oocomm.communicator(), requests+i);
1642 }
1643
1644 if(verbose) {
1645 oocomm.communicator().barrier();
1646 if(oocomm.communicator().rank()==0)
1647 std::cout<<" Creating sends took "<<
1648 time.elapsed()<<std::endl;
1649 }
1650 time.reset();
1651
1652 // Receive Messages
1653 int noRecv = recvFrom.size();
1654 int oldbuffersize=0;
1655 char* recvBuf = 0;
1656 while(noRecv>0) {
1657 // probe for an incoming message
1658 MPI_Status stat;
1659 MPI_Probe(MPI_ANY_SOURCE, 99, oocomm.communicator(), &stat);
1660 int buffersize;
1661 MPI_Get_count(&stat, MPI_PACKED, &buffersize);
1662
1663 if(oldbuffersize<buffersize) {
1664 // buffer too small, reallocate
1665 delete[] recvBuf;
1666 recvBuf = new char[buffersize];
1667 oldbuffersize = buffersize;
1668 }
1669 MPI_Recv(recvBuf, buffersize, MPI_PACKED, stat.MPI_SOURCE, 99, oocomm.communicator(), &stat);
1670 saveRecvBuf(recvBuf, buffersize, myOwnerVec, myOverlapSet, myNeighbors, redistInf,
1671 stat.MPI_SOURCE, oocomm.communicator());
1672 --noRecv;
1673 }
1674
1675 if(recvBuf)
1676 delete[] recvBuf;
1677
1678 time.reset();
1679 // Wait for sending messages to complete
1680 MPI_Status *statuses = new MPI_Status[noSendTo];
1681 int send = MPI_Waitall(noSendTo, requests, statuses);
1682
1683 // check for errors
1684 if(send==MPI_ERR_IN_STATUS) {
1685 std::cerr<<mype<<": Error in sending :"<<std::endl;
1686 // Search for the error
1687 for(int i=0; i< noSendTo; i++)
1688 if(statuses[i].MPI_ERROR!=MPI_SUCCESS) {
1689 char message[300];
1690 int messageLength;
1691 MPI_Error_string(statuses[i].MPI_ERROR, message, &messageLength);
1692 std::cerr<<" source="<<statuses[i].MPI_SOURCE<<" message: ";
1693 for(int i=0; i< messageLength; i++)
1694 std::cout<<message[i];
1695 }
1696 std::cerr<<std::endl;
1697 }
1698
1699 if(verbose) {
1700 oocomm.communicator().barrier();
1701 if(oocomm.communicator().rank()==0)
1702 std::cout<<" Receiving and saving took "<<
1703 time.elapsed()<<std::endl;
1704 }
1705 time.reset();
1706
1707 for(int i=0; i < noSendTo; ++i)
1708 delete[] sendBuffers[i];
1709
1710 delete[] sendBuffers;
1711 delete[] statuses;
1712 delete[] requests;
1713
1714 redistInf.setCommunicator(oocomm.communicator());
1715
1716 //
1717 // 4.2) Create the IndexSet etc.
1718 //
1719
1720 // build the new outputIndexSet
1721
1722
1723 int color=0;
1724
1725 if (!existentOnNextLevel) {
1726 // this process is not used anymore
1727 color= MPI_UNDEFINED;
1728 }
1729 MPI_Comm outputComm;
1730
1731 MPI_Comm_split(oocomm.communicator(), color, oocomm.communicator().rank(), &outputComm);
1732 outcomm = new OOComm(outputComm,oocomm.getSolverCategory(),true);
1733
1734 // translate neighbor ranks.
1735 int newrank=outcomm->communicator().rank();
1736 int *newranks=new int[oocomm.communicator().size()];
1737 std::vector<int> tneighbors;
1738 tneighbors.reserve(myNeighbors.size());
1739
1740 typename OOComm::ParallelIndexSet& outputIndexSet = outcomm->indexSet();
1741
1742 MPI_Allgather(&newrank, 1, MPI_INT, newranks, 1,
1743 MPI_INT, oocomm.communicator());
1744 typedef typename std::set<int>::const_iterator IIter;
1745
1746#ifdef DEBUG_REPART
1747 std::cout<<oocomm.communicator().rank()<<" ";
1748 for(IIter i=myNeighbors.begin(), end=myNeighbors.end();
1749 i!=end; ++i) {
1750 assert(newranks[*i]>=0);
1751 std::cout<<*i<<"->"<<newranks[*i]<<" ";
1752 tneighbors.push_back(newranks[*i]);
1753 }
1754 std::cout<<std::endl;
1755#else
1756 for(IIter i=myNeighbors.begin(), end=myNeighbors.end();
1757 i!=end; ++i) {
1758 tneighbors.push_back(newranks[*i]);
1759 }
1760#endif
1761 delete[] newranks;
1762 myNeighbors.clear();
1763
1764 if(verbose) {
1765 oocomm.communicator().barrier();
1766 if(oocomm.communicator().rank()==0)
1767 std::cout<<" Calculating new neighbours ("<<tneighbors.size()<<") took "<<
1768 time.elapsed()<<std::endl;
1769 }
1770 time.reset();
1771
1772
1773 outputIndexSet.beginResize();
1774 // 1) add the owner vertices
1775 // Sort the owners
1776 std::sort(myOwnerVec.begin(), myOwnerVec.end(), SortFirst());
1777 // The owners are sorted according to there global index
1778 // Therefore the entries of ownerVec are the same as the
1779 // ones in the resulting index set.
1780 typedef typename OOComm::ParallelIndexSet::LocalIndex LocalIndex;
1781 typedef typename std::vector<std::pair<GI,int> >::const_iterator VPIter;
1782 int i=0;
1783 for(VPIter g=myOwnerVec.begin(), end =myOwnerVec.end(); g!=end; ++g, ++i ) {
1784 outputIndexSet.add(g->first,LocalIndex(i, OwnerOverlapCopyAttributeSet::owner, true));
1785 redistInf.addReceiveIndex(g->second, i);
1786 }
1787
1788 if(verbose) {
1789 oocomm.communicator().barrier();
1790 if(oocomm.communicator().rank()==0)
1791 std::cout<<" Adding owner indices took "<<
1792 time.elapsed()<<std::endl;
1793 }
1794 time.reset();
1795
1796
1797 // After all the vertices are received, the vectors must
1798 // be "merged" together to create the final vectors.
1799 // Because some vertices that are sent as overlap could now
1800 // already included as owner vertiecs in the new partition
1801 mergeVec(myOwnerVec, myOverlapSet);
1802
1803 // Trick to free memory
1804 myOwnerVec.clear();
1805 myOwnerVec.swap(myOwnerVec);
1806
1807 if(verbose) {
1808 oocomm.communicator().barrier();
1809 if(oocomm.communicator().rank()==0)
1810 std::cout<<" Merging indices took "<<
1811 time.elapsed()<<std::endl;
1812 }
1813 time.reset();
1814
1815
1816 // 2) add the overlap vertices
1817 typedef typename std::set<GI>::const_iterator SIter;
1818 for(SIter g=myOverlapSet.begin(), end=myOverlapSet.end(); g!=end; ++g, i++) {
1819 outputIndexSet.add(*g,LocalIndex(i, OwnerOverlapCopyAttributeSet::copy, true));
1820 }
1821 myOverlapSet.clear();
1822 outputIndexSet.endResize();
1823
1824#ifdef DUNE_ISTL_WITH_CHECKING
1825 int numOfOwnVtx =0;
1826 typedef typename OOComm::ParallelIndexSet::const_iterator Iterator;
1827 Iterator end = outputIndexSet.end();
1828 for(Iterator index = outputIndexSet.begin(); index != end; ++index) {
1829 if (OwnerSet::contains(index->local().attribute())) {
1830 numOfOwnVtx++;
1831 }
1832 }
1833 numOfOwnVtx = oocomm.communicator().sum(numOfOwnVtx);
1834 // if(numOfOwnVtx!=indexMap.globalOwnerVertices)
1835 // {
1836 // std::cerr<<numOfOwnVtx<<"!="<<indexMap.globalOwnerVertices<<" owners missing or additional ones!"<<std::endl;
1837 // DUNE_THROW(ISTLError, numOfOwnVtx<<"!="<<indexMap.globalOwnerVertices<<" owners missing or additional ones"
1838 // <<" during repartitioning.");
1839 // }
1840 Iterator index=outputIndexSet.begin();
1841 if(index!=end) {
1842 ++index;
1843 for(Iterator old = outputIndexSet.begin(); index != end; old=index++) {
1844 if(old->global()>index->global())
1845 DUNE_THROW(ISTLError, "Index set's globalindex not sorted correctly");
1846 }
1847 }
1848#endif
1849 if(verbose) {
1850 oocomm.communicator().barrier();
1851 if(oocomm.communicator().rank()==0)
1852 std::cout<<" Adding overlap indices took "<<
1853 time.elapsed()<<std::endl;
1854 }
1855 time.reset();
1856
1857
1858 if(color != MPI_UNDEFINED) {
1859 outcomm->remoteIndices().setNeighbours(tneighbors);
1860 outcomm->remoteIndices().template rebuild<true>();
1861
1862 }
1863
1864 // release the memory
1865 delete[] sendTo;
1866
1867 if(verbose) {
1868 oocomm.communicator().barrier();
1869 if(oocomm.communicator().rank()==0)
1870 std::cout<<" Storing indexsets took "<<
1871 time.elapsed()<<std::endl;
1872 }
1873
1874#ifdef PERF_REPART
1875 // stop the time for step 4) and print the results
1876 t4=MPI_Wtime()-t4;
1877 tSum = t1 + t2 + t3 + t4;
1878 std::cout<<std::endl
1879 <<mype<<": WTime for step 1): "<<t1
1880 <<" 2): "<<t2
1881 <<" 3): "<<t3
1882 <<" 4): "<<t4
1883 <<" total: "<<tSum
1884 <<std::endl;
1885#endif
1886
1887 return color!=MPI_UNDEFINED;
1888
1889 }
1890#else
1891 template<class G, class P,class T1, class T2, class R>
1892 bool graphRepartition(const G& graph, P& oocomm, int nparts,
1893 P*& outcomm,
1894 R& redistInf,
1895 bool v=false)
1896 {
1897 if(nparts!=oocomm.size())
1898 DUNE_THROW(NotImplemented, "only available for MPI programs");
1899 }
1900
1901
1902 template<class G, class P,class T1, class T2, class R>
1903 bool commGraphRepartition(const G& graph, P& oocomm, int nparts,
1904 P*& outcomm,
1905 R& redistInf,
1906 bool v=false)
1907 {
1908 if(nparts!=oocomm.size())
1909 DUNE_THROW(NotImplemented, "only available for MPI programs");
1910 }
1911#endif // HAVE_MPI
1912} // end of namespace Dune
1913#endif
The (undirected) graph of a matrix.
Definition: graph.hh:50
int rank() const
Return rank, is between 0 and size()-1.
Definition: mpicollectivecommunication.hh:162
T max(T &in) const
Compute the maximum of the argument over all processes and return the result in every process....
Definition: mpicollectivecommunication.hh:224
int size() const
Number of processes in set, is greater than 0.
Definition: mpicollectivecommunication.hh:168
int barrier() const
Wait until all processes have arrived at this point in the program.
Definition: mpicollectivecommunication.hh:239
T sum(T &in) const
Compute the sum of the argument over all processes and return the result in every process....
Definition: mpicollectivecommunication.hh:175
Index Set Interface base class.
Definition: indexidset.hh:78
IndexType size(GeometryType type) const
Return total number of entities of given geometry type in entity set .
Definition: indexidset.hh:204
MPI_Comm communicator_
The MPI communicator we use.
Definition: interface.hh:315
size_type N() const
Return the number of rows.
Definition: matrix.hh:160
A class setting up standard communication for a two-valued attribute set with owner/overlap/copy sema...
Definition: owneroverlapcopy.hh:173
const ParallelIndexSet & indexSet() const
Get the underlying parallel index set.
Definition: owneroverlapcopy.hh:466
const SolverCategory::Category getSolverCategory() const
Set Solver Category.
Definition: owneroverlapcopy.hh:302
void copyCopyToAll(const T &source, T &dest) const
Communicate values from copy data points to all other data points.
Definition: owneroverlapcopy.hh:335
void copyOwnerToAll(const T &source, T &dest) const
Communicate values from owner data points to all other data points.
Definition: owneroverlapcopy.hh:318
const RemoteIndices & remoteIndices() const
Get the underlying remote indices.
Definition: owneroverlapcopy.hh:475
LocalIndex::Attribute Attribute
The type of the attribute.
Definition: remoteindices.hh:220
const_iterator end() const
Get an iterator over all remote index lists.
Definition: remoteindices.hh:1525
int neighbours() const
Get the number of processors we share indices with.
Definition: remoteindices.hh:1442
const_iterator begin() const
Get an iterator over all remote index lists.
Definition: remoteindices.hh:1518
A simple stop watch.
Definition: timer.hh:52
void reset()
Reset timer while keeping the running/stopped state.
Definition: timer.hh:66
double elapsed() const
Get elapsed user-time from last reset until now/last stop in seconds.
Definition: timer.hh:86
Provides utility classes for syncing distributed data via MPI communication.
Classes for building sets out of enumeration values.
Provides classes for building the matrix graph.
size_t size() const
Get the total number (public and nonpublic) indices.
void repairLocalIndexPointers(std::map< int, SLList< std::pair< typename T::GlobalIndex, typename T::LocalIndex::Attribute >, A > > &globalMap, RemoteIndices< T, A1 > &remoteIndices, const T &indexSet)
Repair the pointers to the local indices in the remote indices.
Definition: indicessyncer.hh:492
void storeGlobalIndicesOfRemoteIndices(std::map< int, SLList< std::pair< typename T::GlobalIndex, typename T::LocalIndex::Attribute >, A > > &globalMap, const RemoteIndices< T, A1 > &remoteIndices, const T &indexSet)
Stores the corresponding global indices of the remote index information.
Definition: indicessyncer.hh:462
iterator begin()
Get an iterator over the indices positioned at the first index.
iterator end()
Get an iterator over the indices positioned after the last index.
const InformationMap & interfaces() const
Get information about the interfaces.
Definition: interface.hh:423
const IndexPair * pair(const std::size_t &local) const
Get the index pair corresponding to a local index.
#define DUNE_THROW(E, m)
Definition: exceptions.hh:244
DInfoType dinfo(std::cout)
Stream for informative output.
Definition: stdstreams.hh:139
DVerbType dverb(std::cout)
Singleton of verbose debug stream.
Definition: stdstreams.hh:115
Provides a map between global and local indices.
Class for adding missing indices of a distributed index set in a local communication.
Dune namespace.
Definition: alignment.hh:14
void fillIndexSetHoles(const G &graph, Dune::OwnerOverlapCopyCommunication< T1, T2 > &oocomm)
Fills the holes in an index set.
Definition: repartition.hh:58
bool graphRepartition(const G &graph, Dune::OwnerOverlapCopyCommunication< T1, T2 > &oocomm, int nparts, Dune::OwnerOverlapCopyCommunication< T1, T2 > *&outcomm, RedistributeInterface &redistInf, bool verbose=false)
execute a graph repartition for a giving graph and indexset.
Definition: repartition.hh:1233
Classes providing communication interfaces for overlapping Schwarz methods.
Traits classes for mapping types onto MPI_Datatype.
Classes describing a distributed indexset.
Standard Dune debug streams.
A traits class describing the mapping of types onto MPI_Datatypes.
Definition: mpitraits.hh:37
@ nonoverlapping
Category for on overlapping solvers.
Definition: solvercategory.hh:24
A simple timing class.
Definition of the DUNE_UNUSED macro for the case that config.h is not available.
#define DUNE_UNUSED_PARAMETER(parm)
A macro to mark intentional unused function parameters with.
Definition: unused.hh:18
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Jul 15, 22:36, 2024)