Dune Core Modules (2.3.1)

multilineargeometry.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_GEOMETRY_MULTILINEARGEOMETRY_HH
4#define DUNE_GEOMETRY_MULTILINEARGEOMETRY_HH
5
6#include <cassert>
7#include <limits>
8#include <vector>
9
13
14#include <dune/geometry/referenceelements.hh>
15#include <dune/geometry/type.hh>
16#include <dune/geometry/genericgeometry/geometrytraits.hh>
17#include <dune/geometry/genericgeometry/matrixhelper.hh>
18
19namespace Dune
20{
21
22 // External Forward Declarations
23 // -----------------------------
24
25 template< class ctype, int dim >
26 class ReferenceElement;
27
28 template< class ctype, int dim >
29 struct ReferenceElements;
30
31
32
33 // MultiLinearGeometryTraits
34 // -------------------------
35
45 template< class ct >
47 {
66 typedef GenericGeometry::MatrixHelper< GenericGeometry::DuneCoordTraits< ct > > MatrixHelper;
67
69 static ct tolerance () { return ct( 16 ) * std::numeric_limits< ct >::epsilon(); }
70
94 template< int mydim, int cdim >
96 {
97 typedef std::vector< FieldVector< ct, cdim > > Type;
98 };
99
113 template< int dim >
115 {
116 static const bool v = false;
117 static const unsigned int topologyId = ~0u;
118 };
119 };
120
121
122
123 // MultiLinearGeometry
124 // -------------------
125
149 template< class ct, int mydim, int cdim, class Traits = MultiLinearGeometryTraits< ct > >
151 {
153
154 public:
156 typedef ct ctype;
157
159 static const int mydimension= mydim;
161 static const int coorddimension = cdim;
162
171
174
176 class JacobianInverseTransposed;
177
181 typedef JacobianInverseTransposed Jacobian;
182
185
186 private:
187 static const bool hasSingleGeometryType = Traits::template hasSingleGeometryType< mydimension >::v;
188
189 protected:
190 typedef typename Traits::MatrixHelper MatrixHelper;
192
194
195 private:
196 typedef typename Traits::template CornerStorage< mydimension, coorddimension >::Type::const_iterator CornerIterator;
197
198 public:
208 template< class Corners >
210 const Corners &corners )
211 : refElement_( &refElement ),
212 corners_( corners )
213 {}
214
224 template< class Corners >
226 const Corners &corners )
227 : refElement_( &ReferenceElements::general( gt ) ),
228 corners_( corners )
229 {}
230
232 bool affine () const
233 {
234 CornerIterator cit = corners_.begin();
235 return affine( topologyId(), integral_constant< int, mydimension >(), cit, jacobianTransposed_ );
236 }
237
239 Dune::GeometryType type () const { return GeometryType( topologyId(), mydimension ); }
240
242 int corners () const { return refElement().size( mydimension ); }
243
245 GlobalCoordinate corner ( int i ) const
246 {
247 assert( (i >= 0) && (i < corners()) );
248 return corners_[ i ];
249 }
250
252 GlobalCoordinate center () const { return global( refElement().position( 0, 0 ) ); }
253
261 {
262 CornerIterator cit = corners_.begin();
264 global< false >( topologyId(), integral_constant< int, mydimension >(), cit, ctype( 1 ), local, ctype( 1 ), y );
265 return y;
266 }
267
281 {
282 const ctype tolerance = Traits::tolerance();
283 LocalCoordinate x = refElement().position( 0, 0 );
285 do
286 {
287 // Newton's method: DF^n dx^n = F^n, x^{n+1} -= dx^n
288 const GlobalCoordinate dglobal = (*this).global( x ) - global;
289 MatrixHelper::template xTRightInvA< mydimension, coorddimension >( jacobianTransposed( x ), dglobal, dx );
290 x -= dx;
291 } while( dx.two_norm2() > tolerance );
292 return x;
293 }
294
310 {
311 return MatrixHelper::template sqrtDetAAT< mydimension, coorddimension >( jacobianTransposed( local ) );
312 }
313
322 ctype volume () const
323 {
324 return integrationElement( refElement().position( 0, 0 ) ) * refElement().volume();
325 }
326
337 {
338 CornerIterator cit = corners_.begin();
339 jacobianTransposed< false >( topologyId(), integral_constant< int, mydimension >(), cit, ctype( 1 ), local, ctype( 1 ), jacobianTransposed_ );
340 return jacobianTransposed_;
341 }
342
349 const JacobianInverseTransposed &jacobianInverseTransposed ( const LocalCoordinate &local ) const;
350
351 protected:
352 const ReferenceElement &refElement () const { return *refElement_; }
353
354 TopologyId topologyId () const
355 {
357 }
358
359 template< bool add, int dim >
360 static void global ( TopologyId topologyId, integral_constant< int, dim >,
361 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
362 const ctype &rf, GlobalCoordinate &y );
363 template< bool add >
364 static void global ( TopologyId topologyId, integral_constant< int, 0 >,
365 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
366 const ctype &rf, GlobalCoordinate &y );
367
368 template< bool add, int rows, int dim >
369 static void jacobianTransposed ( TopologyId topologyId, integral_constant< int, dim >,
370 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
371 const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt );
372 template< bool add, int rows >
373 static void jacobianTransposed ( TopologyId topologyId, integral_constant< int, 0 >,
374 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
375 const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt );
376
377 template< int dim >
378 static bool affine ( TopologyId topologyId, integral_constant< int, dim >, CornerIterator &cit, JacobianTransposed &jt );
379 static bool affine ( TopologyId topologyId, integral_constant< int, 0 >, CornerIterator &cit, JacobianTransposed &jt );
380
381 protected:
382 TopologyId topologyId ( integral_constant< bool, true > ) const { return TopologyId(); }
383 unsigned int topologyId ( integral_constant< bool, false > ) const { return refElement().type().id(); }
384
385 mutable JacobianTransposed jacobianTransposed_;
386 mutable JacobianInverseTransposed jacobianInverseTransposed_;
387
388 private:
389 const ReferenceElement *refElement_;
390 typename Traits::template CornerStorage< mydimension, coorddimension >::Type corners_;
391 };
392
393
394
395 // MultiLinearGeometry::JacobianInverseTransposed
396 // ----------------------------------------------
397
398 template< class ct, int mydim, int cdim, class Traits >
399 class MultiLinearGeometry< ct, mydim, cdim, Traits >::JacobianInverseTransposed
400 : public FieldMatrix< ctype, coorddimension, mydimension >
401 {
403
404 public:
405 void setup ( const JacobianTransposed &jt )
406 {
407 detInv_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jt, static_cast< Base & >( *this ) );
408 }
409
410 void setupDeterminant ( const JacobianTransposed &jt )
411 {
412 detInv_ = MatrixHelper::template sqrtDetAAT< mydimension, coorddimension >( jt );
413 }
414
415 ctype det () const { return ctype( 1 ) / detInv_; }
416 ctype detInv () const { return detInv_; }
417
418 private:
419 ctype detInv_;
420 };
421
422
423
436 template< class ct, int mydim, int cdim, class Traits = MultiLinearGeometryTraits< ct > >
438 : public MultiLinearGeometry< ct, mydim, cdim, Traits >
439 {
442
443 protected:
444 typedef typename Base::MatrixHelper MatrixHelper;
445
446 public:
448
449 typedef typename Base::ctype ctype;
450
451 using Base::mydimension;
453
454 typedef typename Base::LocalCoordinate LocalCoordinate;
456
458 typedef typename Base::JacobianInverseTransposed JacobianInverseTransposed;
459
460 template< class CornerStorage >
461 CachedMultiLinearGeometry ( const ReferenceElement &refElement, const CornerStorage &cornerStorage )
462 : Base( refElement, cornerStorage ),
463 affine_( Base::affine() ),
464 jacobianInverseTransposedComputed_( false ),
465 integrationElementComputed_( false )
466 {}
467
468 template< class CornerStorage >
469 CachedMultiLinearGeometry ( Dune::GeometryType gt, const CornerStorage &cornerStorage )
470 : Base( gt, cornerStorage ),
471 affine_( Base::affine() ),
472 jacobianInverseTransposedComputed_( false ),
473 integrationElementComputed_( false )
474 {}
475
477 bool affine () const { return affine_; }
478
479 using Base::corner;
480
482 GlobalCoordinate center () const { return global( refElement().position( 0, 0 ) ); }
483
491 {
492 if( affine() )
493 {
495 jacobianTransposed_.umtv( local, global );
496 return global;
497 }
498 else
499 return Base::global( local );
500 }
501
515 {
516 if( affine() )
517 {
518 LocalCoordinate local;
519 if( jacobianInverseTransposedComputed_ )
520 jacobianInverseTransposed_.mtv( global - corner( 0 ), local );
521 else
522 MatrixHelper::template xTRightInvA< mydimension, coorddimension >( jacobianTransposed_, global - corner( 0 ), local );
523 return local;
524 }
525 else
526 return Base::local( global );
527 }
528
543 ctype integrationElement ( const LocalCoordinate &local ) const
544 {
545 if( affine() )
546 {
547 if( !integrationElementComputed_ )
548 {
549 jacobianInverseTransposed_.setupDeterminant( jacobianTransposed_ );
550 integrationElementComputed_ = true;
551 }
552 return jacobianInverseTransposed_.detInv();
553 }
554 else
555 return Base::integrationElement( local );
556 }
557
559 ctype volume () const
560 {
561 if( affine() )
562 return integrationElement( refElement().position( 0, 0 ) ) * refElement().volume();
563 else
564 return Base::volume();
565 }
566
577 {
578 if( affine() )
579 return jacobianTransposed_;
580 else
581 return Base::jacobianTransposed( local );
582 }
583
590 const JacobianInverseTransposed &jacobianInverseTransposed ( const LocalCoordinate &local ) const
591 {
592 if( affine() )
593 {
594 if( !jacobianInverseTransposedComputed_ )
595 {
596 jacobianInverseTransposed_.setup( jacobianTransposed_ );
597 jacobianInverseTransposedComputed_ = true;
598 integrationElementComputed_ = true;
599 }
600 return jacobianInverseTransposed_;
601 }
602 else
603 return Base::jacobianInverseTransposed( local );
604 }
605
606 protected:
607 using Base::refElement;
608
609 using Base::jacobianTransposed_;
610 using Base::jacobianInverseTransposed_;
611
612 private:
613 mutable bool affine_ : 1;
614
615 mutable bool jacobianInverseTransposedComputed_ : 1;
616 mutable bool integrationElementComputed_ : 1;
617 };
618
619
620
621 // Implementation of MultiLinearGeometry
622 // -------------------------------------
623
624 template< class ct, int mydim, int cdim, class Traits >
625 inline const typename MultiLinearGeometry< ct, mydim, cdim, Traits >::JacobianInverseTransposed &
628 {
629 jacobianInverseTransposed_.setup( jacobianTransposed( local ) );
630 return jacobianInverseTransposed_;
631 }
632
633
634 template< class ct, int mydim, int cdim, class Traits >
635 template< bool add, int dim >
637 ::global ( TopologyId topologyId, integral_constant< int, dim >,
638 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
639 const ctype &rf, GlobalCoordinate &y )
640 {
641 const ctype xn = df*x[ dim-1 ];
642 const ctype cxn = ctype( 1 ) - xn;
643
644 if( GenericGeometry::isPrism( topologyId, mydimension, mydimension-dim ) )
645 {
646 // apply (1-xn) times mapping for bottom
647 global< add >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, rf*cxn, y );
648 // apply xn times mapping for top
649 global< true >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, rf*xn, y );
650 }
651 else
652 {
653 assert( GenericGeometry::isPyramid( topologyId, mydimension, mydimension-dim ) );
654 // apply (1-xn) times mapping for bottom (with argument x/(1-xn))
655 if( cxn > Traits::tolerance() || cxn < -Traits::tolerance() )
656 global< add >( topologyId, integral_constant< int, dim-1 >(), cit, df/cxn, x, rf*cxn, y );
657 else
658 global< add >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, ctype( 0 ), y );
659 // apply xn times the tip
660 y.axpy( rf*xn, *cit );
661 ++cit;
662 }
663 }
664
665 template< class ct, int mydim, int cdim, class Traits >
666 template< bool add >
668 ::global ( TopologyId topologyId, integral_constant< int, 0 >,
669 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
670 const ctype &rf, GlobalCoordinate &y )
671 {
672 const GlobalCoordinate &origin = *cit;
673 ++cit;
674 for( int i = 0; i < coorddimension; ++i )
675 y[ i ] = (add ? y[ i ] + rf*origin[ i ] : rf*origin[ i ]);
676 }
677
678
679 template< class ct, int mydim, int cdim, class Traits >
680 template< bool add, int rows, int dim >
682 ::jacobianTransposed ( TopologyId topologyId, integral_constant< int, dim >,
683 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
684 const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt )
685 {
686 assert( rows >= dim );
687
688 const ctype xn = df*x[ dim-1 ];
689 const ctype cxn = ctype( 1 ) - xn;
690
691 CornerIterator cit2( cit );
692 if( GenericGeometry::isPrism( topologyId, mydimension, mydimension-dim ) )
693 {
694 // apply (1-xn) times Jacobian for bottom
695 jacobianTransposed< add >( topologyId, integral_constant< int, dim-1 >(), cit2, df, x, rf*cxn, jt );
696 // apply xn times Jacobian for top
697 jacobianTransposed< true >( topologyId, integral_constant< int, dim-1 >(), cit2, df, x, rf*xn, jt );
698 // compute last row as difference between top value and bottom value
699 global< add >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, -rf, jt[ dim-1 ] );
700 global< true >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, rf, jt[ dim-1 ] );
701 }
702 else
703 {
704 assert( GenericGeometry::isPyramid( topologyId, mydimension, mydimension-dim ) );
705 /*
706 * In the pyramid case, we need a transformation Tb: B -> R^n for the
707 * base B \subset R^{n-1}. The pyramid transformation is then defined as
708 * T: P \subset R^n -> R^n
709 * (x, xn) |-> (1-xn) Tb(x*) + xn t (x \in R^{n-1}, xn \in R)
710 * with the tip of the pyramid mapped to t and x* = x/(1-xn)
711 * the projection of (x,xn) onto the base.
712 *
713 * For the Jacobi matrix DT we get
714 * DT = ( A | b )
715 * with A = DTb(x*) (n x n-1 matrix)
716 * and b = dT/dxn (n-dim column vector).
717 * Furthermore
718 * b = -Tb(x*) + t + \sum_i dTb/dx_i(x^*) x_i/(1-xn)
719 *
720 * Note that both A and b are not defined in the pyramid tip (x=0, xn=1)!
721 * Indeed for B the unit square, Tb mapping B to the quadrilateral given
722 * by the vertices (0,0,0), (2,0,0), (0,1,0), (1,1,0) and t=(0,0,1), we get
723 *
724 * T(x,y,xn) = ( x(2-y/(1-xn)), y, xn )
725 * / 2-y/(1-xn) -x 0 \
726 * DT(x,y,xn) = | 0 1 0 |
727 * \ 0 0 1 /
728 * which is not continuous for xn -> 1, choose for example
729 * x=0, y=1-xn, xn -> 1 --> DT -> diag(1,1,1)
730 * x=1-xn, y=0, xn -> 1 --> DT -> diag(2,1,1)
731 *
732 * However, for Tb affine-linear, Tb(y) = My + y0, DTb = M:
733 * A = M
734 * b = -M x* - y0 + t + \sum_i M_i x_i/(1-xn)
735 * = -M x* - y0 + t + M x*
736 * = -y0 + t
737 * which is continuous for xn -> 1. Note that this b is also given by
738 * b = -Tb(0) + t + \sum_i dTb/dx_i(0) x_i/1
739 * that is replacing x* by 1 and 1-xn by 1 in the formular above.
740 *
741 * For xn -> 1, we can thus set x*=0, "1-xn"=1 (or anything != 0) and get
742 * the right result in case Tb is affine-linear.
743 */
744
745 /* The second case effectively results in x* = 0 */
746 ctype dfcxn = (cxn > Traits::tolerance() || cxn < -Traits::tolerance()) ? df / cxn : 0;
747
748 // initialize last row
749 // b = -Tb(x*)
750 // (b = -Tb(0) = -y0 in case xn -> 1 and Tb affine-linear)
751 global< add >( topologyId, integral_constant< int, dim-1 >(), cit, dfcxn, x, -rf, jt[ dim-1 ] );
752 // b += t
753 jt[ dim-1 ].axpy( rf, *cit );
754 ++cit;
755 // apply Jacobian for bottom (with argument x/(1-xn)) and correct last row
756 if( add )
757 {
758 FieldMatrix< ctype, dim-1, coorddimension > jt2;
759 // jt2 = dTb/dx_i(x*)
760 jacobianTransposed< false >( topologyId, integral_constant< int, dim-1 >(), cit2, dfcxn, x, rf, jt2 );
761 // A = dTb/dx_i(x*) (jt[j], j=0..dim-1)
762 // b += \sum_i dTb/dx_i(x*) x_i/(1-xn) (jt[dim-1])
763 // (b += 0 in case xn -> 1)
764 for( int j = 0; j < dim-1; ++j )
765 {
766 jt[ j ] += jt2[ j ];
767 jt[ dim-1 ].axpy( dfcxn*x[ j ], jt2[ j ] );
768 }
769 }
770 else
771 {
772 // jt = dTb/dx_i(x*)
773 jacobianTransposed< false >( topologyId, integral_constant< int, dim-1 >(), cit2, dfcxn, x, rf, jt );
774 // b += \sum_i dTb/dx_i(x*) x_i/(1-xn)
775 for( int j = 0; j < dim-1; ++j )
776 jt[ dim-1 ].axpy( dfcxn*x[ j ], jt[ j ] );
777 }
778 }
779 }
780
781 template< class ct, int mydim, int cdim, class Traits >
782 template< bool add, int rows >
784 ::jacobianTransposed ( TopologyId topologyId, integral_constant< int, 0 >,
785 CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
786 const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt )
787 {
788 ++cit;
789 }
790
791
792
793 template< class ct, int mydim, int cdim, class Traits >
794 template< int dim >
796 ::affine ( TopologyId topologyId, integral_constant< int, dim >, CornerIterator &cit, JacobianTransposed &jt )
797 {
798 const GlobalCoordinate &orgBottom = *cit;
799 if( !affine( topologyId, integral_constant< int, dim-1 >(), cit, jt ) )
800 return false;
801 const GlobalCoordinate &orgTop = *cit;
802
803 if( GenericGeometry::isPrism( topologyId, mydimension, mydimension-dim ) )
804 {
805 JacobianTransposed jtTop;
806 if( !affine( topologyId, integral_constant< int, dim-1 >(), cit, jtTop ) )
807 return false;
808
809 // check whether both jacobians are identical
810 ctype norm( 0 );
811 for( int i = 0; i < dim-1; ++i )
812 norm += (jtTop[ i ] - jt[ i ]).two_norm2();
813 if( norm >= Traits::tolerance() )
814 return false;
815 }
816 else
817 ++cit;
818 jt[ dim-1 ] = orgTop - orgBottom;
819 return true;
820 }
821
822 template< class ct, int mydim, int cdim, class Traits >
824 ::affine ( TopologyId topologyId, integral_constant< int, 0 >, CornerIterator &cit, JacobianTransposed &jt )
825 {
826 ++cit;
827 return true;
828 }
829
830} // namespace Dune
831
832#endif // #ifndef DUNE_GEOMETRY_MULTILINEARGEOMETRY_HH
Implement a MultiLinearGeometry with additional caching.
Definition: multilineargeometry.hh:439
GlobalCoordinate global(const LocalCoordinate &local) const
evaluate the mapping
Definition: multilineargeometry.hh:490
const JacobianInverseTransposed & jacobianInverseTransposed(const LocalCoordinate &local) const
obtain the transposed of the Jacobian's inverse
Definition: multilineargeometry.hh:590
bool affine() const
is this mapping affine?
Definition: multilineargeometry.hh:477
const JacobianTransposed & jacobianTransposed(const LocalCoordinate &local) const
obtain the transposed of the Jacobian
Definition: multilineargeometry.hh:576
GlobalCoordinate corner(int i) const
obtain coordinates of the i-th corner
Definition: multilineargeometry.hh:245
ctype volume() const
obtain the volume of the mapping's image
Definition: multilineargeometry.hh:559
ctype integrationElement(const LocalCoordinate &local) const
obtain the integration element
Definition: multilineargeometry.hh:543
GlobalCoordinate center() const
obtain the centroid of the mapping's image
Definition: multilineargeometry.hh:482
void umtv(const X &x, Y &y) const
y += A^T x
Definition: densematrix.hh:450
FieldTraits< value_type >::real_type two_norm2() const
square of two norm (sum over squared values of entries), need for block recursion
Definition: densevector.hh:530
vector space out of a tensor product of fields.
Definition: fvector.hh:92
Unique label for each type of entities that can occur in DUNE grids.
Definition: type.hh:25
unsigned int id() const
Return the topology id the type.
Definition: type.hh:327
generic geometry implementation based on corner coordinates
Definition: multilineargeometry.hh:151
static const int mydimension
geometry dimension
Definition: multilineargeometry.hh:159
Dune::ReferenceElement< ctype, mydimension > ReferenceElement
type of reference element
Definition: multilineargeometry.hh:184
JacobianInverseTransposed Jacobian
For backward-compatibility, export the type JacobianInverseTransposed as Jacobian.
Definition: multilineargeometry.hh:181
Dune::GeometryType type() const
obtain the name of the reference element
Definition: multilineargeometry.hh:239
FieldVector< ctype, coorddimension > GlobalCoordinate
type of global coordinates
Definition: multilineargeometry.hh:170
GlobalCoordinate global(const LocalCoordinate &local) const
evaluate the mapping
Definition: multilineargeometry.hh:260
GlobalCoordinate center() const
obtain the centroid of the mapping's image
Definition: multilineargeometry.hh:252
GlobalCoordinate corner(int i) const
obtain coordinates of the i-th corner
Definition: multilineargeometry.hh:245
ct ctype
coordinate type
Definition: multilineargeometry.hh:156
static const int coorddimension
coordinate dimension
Definition: multilineargeometry.hh:161
int corners() const
obtain number of corners of the corresponding reference element
Definition: multilineargeometry.hh:242
FieldVector< ctype, mydimension > LocalCoordinate
type of user data
Definition: multilineargeometry.hh:168
ctype volume() const
obtain the volume of the mapping's image
Definition: multilineargeometry.hh:322
MultiLinearGeometry(const ReferenceElement &refElement, const Corners &corners)
constructor
Definition: multilineargeometry.hh:209
const JacobianTransposed & jacobianTransposed(const LocalCoordinate &local) const
obtain the transposed of the Jacobian
Definition: multilineargeometry.hh:336
MultiLinearGeometry(Dune::GeometryType gt, const Corners &corners)
constructor
Definition: multilineargeometry.hh:225
ctype integrationElement(const LocalCoordinate &local) const
obtain the integration element
Definition: multilineargeometry.hh:309
FieldMatrix< ctype, mydimension, coorddimension > JacobianTransposed
type of jacobian transposed
Definition: multilineargeometry.hh:173
const JacobianInverseTransposed & jacobianInverseTransposed(const LocalCoordinate &local) const
obtain the transposed of the Jacobian's inverse
Definition: multilineargeometry.hh:627
bool affine() const
is this mapping affine?
Definition: multilineargeometry.hh:232
This class provides access to geometric and topological properties of a reference element....
Definition: referenceelements.hh:58
int size(int c) const
number of subentities of codimension c
Definition: referenceelements.hh:86
const FieldVector< ctype, dim > & position(int i, int c) const
position of the barycenter of entity (i,c)
Definition: referenceelements.hh:154
ctype volume() const
obtain the volume of the reference element
Definition: referenceelements.hh:280
const GeometryType & type(int i, int c) const
obtain the type of subentity (i,c)
Definition: referenceelements.hh:136
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
bool gt(const T &first, const T &second, typename EpsilonType< T >::Type epsilon)
test if first greater than second
Definition: float_cmp.cc:132
Dune namespace.
Definition: alignment.hh:14
template specifying the storage for the corners
Definition: multilineargeometry.hh:96
will there be only one geometry type for a dimension?
Definition: multilineargeometry.hh:115
default traits class for MultiLinearGeometry
Definition: multilineargeometry.hh:47
static ct tolerance()
tolerance to numerical algorithms
Definition: multilineargeometry.hh:69
GenericGeometry::MatrixHelper< GenericGeometry::DuneCoordTraits< ct > > MatrixHelper
helper structure containing some matrix routines
Definition: multilineargeometry.hh:66
Class providing access to the singletons of the reference elements. Special methods are available for...
Definition: referenceelements.hh:563
Select a type based on a condition.
Definition: typetraits.hh:419
Generate a type for a given integral constant.
Definition: typetraits.hh:457
A unique label for each type of element that can occur in a grid.
Traits for type conversions and type information.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 12, 23:30, 2024)