Dune Core Modules (2.3.1)
matrix.hh
Go to the documentation of this file.
58 };
Definition: bvector.hh:585
FieldTraits< field_type >::real_type infinity_norm() const
infinity norm (row sum norm, how to generalize for blocks?)
Definition: matrix.hh:505
size_type rowdim(size_type r) const
The number of scalar rows.
Definition: matrix.hh:196
@ blocklevel
The number of nesting levels the matrix contains.
Definition: matrix.hh:57
VariableBlockVector< T, A >::window_type row_type
The type implementing a matrix row.
Definition: matrix.hh:38
void usmhv(const field_type &alpha, const X &x, Y &y) const
y += alpha A^H x
Definition: matrix.hh:471
void usmv(const field_type &alpha, const X &x, Y &y) const
Definition: matrix.hh:368
Matrix transpose() const
Return the transpose of the matrix.
Definition: matrix.hh:258
void setSize(size_type rows, size_type cols)
Change the matrix size.
Definition: matrix.hh:73
T::field_type field_type
Export the type representing the underlying field.
Definition: matrix.hh:29
size_type coldim(size_type c) const
The number of scalar columns.
Definition: matrix.hh:207
Matrix & operator-=(const Matrix &b)
Subtract the entries of another matrix from this one.
Definition: matrix.hh:248
FieldTraits< field_type >::real_type frobenius_norm2() const
square of frobenius norm, need for block recursion
Definition: matrix.hh:495
VariableBlockVector< T, A >::Iterator RowIterator
Iterator over the matrix rows.
Definition: matrix.hh:44
row_type::iterator ColIterator
Iterator for the entries of each row.
Definition: matrix.hh:47
Matrix & operator=(const field_type &t)
Assignment from scalar.
Definition: matrix.hh:131
ConstRowIterator end() const
Get const iterator to one beyond last row.
Definition: matrix.hh:111
friend Y operator*(const Matrix< T > &m, const X &vec)
Generic matrix-vector multiplication.
Definition: matrix.hh:283
Matrix< T > & operator*=(const field_type &scalar)
Multiplication with a scalar.
Definition: matrix.hh:218
Matrix & operator+=(const Matrix &b)
Add the entries of another matrix to this one.
Definition: matrix.hh:234
ConstRowIterator begin() const
Get const iterator to first row.
Definition: matrix.hh:105
VariableBlockVector< T, A >::ConstIterator ConstRowIterator
Const iterator over the matrix rows.
Definition: matrix.hh:50
row_type::const_iterator ConstColIterator
Const iterator for the entries of each row.
Definition: matrix.hh:53
VariableBlockVector< T, A > data_
Abuse VariableBlockVector as an engine for a 2d array ISTL-style.
Definition: matrix.hh:549
FieldTraits< field_type >::real_type infinity_norm_real() const
simplified infinity norm (uses Manhattan norm for complex values)
Definition: matrix.hh:518
row_type & operator[](size_type row)
The index operator.
Definition: matrix.hh:138
T block_type
Export the type representing the components.
Definition: matrix.hh:32
bool exists(size_type i, size_type j) const
return true if (i,j) is in pattern
Definition: matrix.hh:533
Matrix< T > & operator/=(const field_type &scalar)
Multiplication with a scalar.
Definition: matrix.hh:224
friend Matrix< T > operator*(const Matrix< T > &m1, const Matrix< T > &m2)
Generic matrix multiplication.
Definition: matrix.hh:268
const row_type & operator[](size_type row) const
The const index operator.
Definition: matrix.hh:149
FieldTraits< field_type >::real_type frobenius_norm() const
frobenius norm: sqrt(sum over squared values of entries)
Definition: matrix.hh:489
void usmtv(const field_type &alpha, const X &x, Y &y) const
y += alpha A^T x
Definition: matrix.hh:420
Matrix(size_type rows, size_type cols)
Create uninitialized matrix of size rows x cols.
Definition: matrix.hh:66
ConstIterator class for sequential access.
Definition: vbvector.hh:647
RealIterator< B > iterator
iterator type for sequential access
Definition: basearray.hh:156
RealIterator< const B > const_iterator
iterator class for sequential access
Definition: basearray.hh:195
Type traits to determine the type of reals (when working with complex numbers)
???
|
Legal Statements / Impressum |
Hosted by TU Dresden |
generated with Hugo v0.111.3
(Nov 12, 23:30, 2024)