Dune Core Modules (2.3.1)

kamg.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_AMG_KAMG_HH
4#define DUNE_AMG_KAMG_HH
5
7#include "amg.hh"
8
9namespace Dune
10{
11 namespace Amg
12 {
13
28 template<class AMG>
30 : public Preconditioner<typename AMG::Domain,typename AMG::Range>
31 {
33 typedef typename AMG::Domain Domain;
35 typedef typename AMG::Range Range;
36 public:
37
38 enum {
41 };
42
51 : amg_(amg), coarseSolver_(coarseSolver)
52 {}
53
55 void pre(typename AMG::Domain& x, typename AMG::Range& b)
56 {}
57
59 void post(typename AMG::Domain& x)
60 {}
61
63 void apply(typename AMG::Domain& v, const typename AMG::Range& d)
64 {
65 // Copy data
66 *levelContext_->update=0;
67 *levelContext_->rhs = d;
68 *levelContext_->lhs = v;
69
70 presmooth(*levelContext_, amg_.preSteps_);
71 bool processFineLevel =
72 amg_.moveToCoarseLevel(*levelContext_);
73
74 if(processFineLevel) {
75 typename AMG::Range b=*levelContext_->rhs;
76 typename AMG::Domain x=*levelContext_->update;
78 coarseSolver_->apply(x, b, res);
79 *levelContext_->update=x;
80 }
81
82 amg_.moveToFineLevel(*levelContext_, processFineLevel);
83
84 postsmooth(*levelContext_, amg_.postSteps_);
85 v=*levelContext_->update;
86 }
87
93 {
94 return coarseSolver_;
95 }
96
102 {
103 levelContext_=p;
104 }
105
108 {}
109
110 private:
112 AMG& amg_;
117 };
118
119
120
131 template<class M, class X, class S, class PI=SequentialInformation,
132 class K=GeneralizedPCGSolver<X>, class A=std::allocator<X> >
133 class KAMG : public Preconditioner<X,X>
134 {
135 public:
139 typedef K KrylovSolver;
149 typedef typename Amg::Operator Operator;
151 typedef typename Amg::Domain Domain;
153 typedef typename Amg::Range Range;
157 typedef typename Amg::ScalarProduct ScalarProduct;
158
159 enum {
162 };
176 KAMG(const OperatorHierarchy& matrices, CoarseSolver& coarseSolver,
177 const SmootherArgs& smootherArgs, std::size_t gamma,
178 std::size_t preSmoothingSteps =1, std::size_t postSmoothingSteps = 1,
179 std::size_t maxLevelKrylovSteps = 3 , double minDefectReduction =1e-1);
180
197 template<class C>
198 KAMG(const Operator& fineOperator, const C& criterion,
199 const SmootherArgs& smootherArgs, std::size_t gamma=1,
200 std::size_t preSmoothingSteps=1, std::size_t postSmoothingSteps=1,
201 std::size_t maxLevelKrylovSteps=3, double minDefectReduction=1e-1,
203
205 void pre(Domain& x, Range& b);
207 void post(Domain& x);
209 void apply(Domain& v, const Range& d);
210
211 std::size_t maxlevels();
212
213 private:
215 Amg amg;
216
218 std::size_t maxLevelKrylovSteps;
219
221 double levelDefectReduction;
222
224 std::vector<shared_ptr<typename Amg::ScalarProduct> > scalarproducts;
225
227 std::vector<shared_ptr<KAmgTwoGrid<Amg> > > ksolvers;
228 };
229
230 template<class M, class X, class S, class P, class K, class A>
232 const SmootherArgs& smootherArgs,
233 std::size_t gamma, std::size_t preSmoothingSteps,
234 std::size_t postSmoothingSteps,
235 std::size_t ksteps, double reduction)
236 : amg(matrices, coarseSolver, smootherArgs, gamma, preSmoothingSteps,
237 postSmoothingSteps), maxLevelKrylovSteps(ksteps), levelDefectReduction(reduction)
238 {}
239
240 template<class M, class X, class S, class P, class K, class A>
241 template<class C>
242 KAMG<M,X,S,P,K,A>::KAMG(const Operator& fineOperator, const C& criterion,
243 const SmootherArgs& smootherArgs, std::size_t gamma,
244 std::size_t preSmoothingSteps, std::size_t postSmoothingSteps,
245 std::size_t ksteps, double reduction,
246 const ParallelInformation& pinfo)
247 : amg(fineOperator, criterion, smootherArgs, gamma, preSmoothingSteps,
248 postSmoothingSteps, false, pinfo), maxLevelKrylovSteps(ksteps), levelDefectReduction(reduction)
249 {}
250
251
252 template<class M, class X, class S, class P, class K, class A>
254 {
255 amg.pre(x,b);
256 scalarproducts.reserve(amg.levels());
257 ksolvers.reserve(amg.levels());
258
259 typename OperatorHierarchy::ParallelMatrixHierarchy::Iterator
260 matrix = amg.matrices_->matrices().coarsest();
262 pinfo = amg.matrices_->parallelInformation().coarsest();
263 bool hasCoarsest=(amg.levels()==amg.maxlevels());
264
265 if(hasCoarsest) {
266 if(matrix==amg.matrices_->matrices().finest())
267 return;
268 --matrix;
269 --pinfo;
270 ksolvers.push_back(shared_ptr<KAmgTwoGrid<Amg> >(new KAmgTwoGrid<Amg>(amg, amg.solver_)));
271 }else
273
274 std::ostringstream s;
275
276 if(matrix!=amg.matrices_->matrices().finest())
277 while(true) {
278 scalarproducts.push_back(shared_ptr<typename Amg::ScalarProduct>(Amg::ScalarProductChooser::construct(*pinfo)));
280 shared_ptr<InverseOperator<Domain,Range> >(new KrylovSolver(*matrix, *(scalarproducts.back()),
281 *(ksolvers.back()), levelDefectReduction,
282 maxLevelKrylovSteps, 0));
283 ksolvers.push_back(shared_ptr<KAmgTwoGrid<Amg> >(new KAmgTwoGrid<Amg>(amg, ks)));
284 --matrix;
285 --pinfo;
286 if(matrix==amg.matrices_->matrices().finest())
287 break;
288 }
289 }
290
291
292 template<class M, class X, class S, class P, class K, class A>
294 {
295 amg.post(x);
296
297 }
298
299 template<class M, class X, class S, class P, class K, class A>
301 {
302 if(ksolvers.size()==0)
303 {
304 Range td=d;
306 amg.solver_->apply(v,td,res);
307 }else
308 {
309 typedef typename Amg::LevelContext LevelContext;
310 Dune::shared_ptr<LevelContext> levelContext(new LevelContext);
311 amg.initIteratorsWithFineLevel(*levelContext);
312 typedef typename std::vector<shared_ptr<KAmgTwoGrid<Amg> > >::iterator Iter;
313 for(Iter solver=ksolvers.begin(); solver!=ksolvers.end(); ++solver)
314 (*solver)->setLevelContext(levelContext);
315 ksolvers.back()->apply(v,d);
316 }
317 }
318
319 template<class M, class X, class S, class P, class K, class A>
320 std::size_t KAMG<M,X,S,P,K,A>::maxlevels()
321 {
322 return amg.maxlevels();
323 }
324
326 } // Amg
327} // Dune
328
329#endif
The AMG preconditioner.
Parallel algebraic multigrid based on agglomeration.
Definition: amg.hh:57
an algebraic multigrid method using a Krylov-cycle.
Definition: kamg.hh:134
Amg::Domain Domain
the type of the domain.
Definition: kamg.hh:151
Amg::SmootherArgs SmootherArgs
The type of the arguments for construction of the smoothers.
Definition: kamg.hh:147
Amg::ParallelInformation ParallelInformation
the type of the parallelinformation to use.
Definition: kamg.hh:145
Amg::CoarseSolver CoarseSolver
The type of the coarse solver.
Definition: kamg.hh:143
Amg::OperatorHierarchy OperatorHierarchy
The type of the hierarchy of operators.
Definition: kamg.hh:141
Amg::Range Range
The type of the range.
Definition: kamg.hh:153
Amg::ScalarProduct ScalarProduct
The type of the scalar product.
Definition: kamg.hh:157
AMG< M, X, S, PI, A > Amg
The type of the underlying AMG.
Definition: kamg.hh:137
Amg::Operator Operator
the type of the lineatr operator.
Definition: kamg.hh:149
Amg::ParallelInformationHierarchy ParallelInformationHierarchy
The type of the hierarchy of parallel information.
Definition: kamg.hh:155
K KrylovSolver
The type of the Krylov solver for the cycle.
Definition: kamg.hh:139
@ category
The solver category.
Definition: kamg.hh:161
Two grid operator for AMG with Krylov cycle.
Definition: kamg.hh:31
void pre(typename AMG::Domain &x, typename AMG::Range &b)
Prepare the preconditioner.
Definition: kamg.hh:55
~KAmgTwoGrid()
Destructor.
Definition: kamg.hh:107
KAmgTwoGrid(AMG &amg, shared_ptr< InverseOperator< Domain, Range > > coarseSolver)
Constructor.
Definition: kamg.hh:50
void post(typename AMG::Domain &x)
Clean up.
Definition: kamg.hh:59
InverseOperator< Domain, Range > * coarseSolver()
Get a pointer to the coarse grid solver.
Definition: kamg.hh:92
void setLevelContext(Dune::shared_ptr< typename AMG::LevelContext > p)
Set the level context pointer.
Definition: kamg.hh:101
void apply(typename AMG::Domain &v, const typename AMG::Range &d)
Apply one step of the preconditioner to the system A(v)=d.
Definition: kamg.hh:63
@ category
The solver category.
Definition: kamg.hh:40
The hierarchies build by the coarsening process.
Definition: hierarchy.hh:318
Generalized preconditioned conjugate gradient solver.
Definition: solvers.hh:1365
Enables iteration over all entities of a given codimension and level of a grid. See also the document...
Definition: leveliterator.hh:31
Base class for matrix free definition of preconditioners.
Definition: preconditioner.hh:26
A reference counting smart pointer.
Definition: shared_ptr.hh:64
void apply(Domain &v, const Range &d)
Apply one step of the preconditioner to the system A(v)=d.
Definition: kamg.hh:300
X Domain
The domain type.
Definition: amg.hh:79
SmootherTraits< Smoother >::Arguments SmootherArgs
The argument type for the construction of the smoother.
Definition: amg.hh:92
M Operator
The matrix operator type.
Definition: amg.hh:65
void post(Domain &x)
Clean up.
Definition: kamg.hh:293
X Range
The range type.
Definition: amg.hh:81
void presmooth(LevelContext &levelContext, size_t steps)
Apply pre smoothing on the current level.
Definition: smoother.hh:408
void postsmooth(LevelContext &levelContext, size_t steps)
Apply post smoothing on the current level.
Definition: smoother.hh:430
KAMG(const OperatorHierarchy &matrices, CoarseSolver &coarseSolver, const SmootherArgs &smootherArgs, std::size_t gamma, std::size_t preSmoothingSteps=1, std::size_t postSmoothingSteps=1, std::size_t maxLevelKrylovSteps=3, double minDefectReduction=1e-1)
Construct a new amg with a specific coarse solver.
Definition: kamg.hh:231
void pre(Domain &x, Range &b)
Prepare the preconditioner.
Definition: kamg.hh:253
PI ParallelInformation
The type of the parallel information. Either OwnerOverlapCommunication or another type describing the...
Definition: amg.hh:72
@ category
The solver category.
Definition: amg.hh:96
Dune namespace.
Definition: alignment.hh:14
Define general preconditioner interface.
Statistics about the application of an inverse operator.
Definition: solver.hh:32
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Nov 12, 23:30, 2024)