DUNE PDELab (2.8)

nedelec1stkindcube.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_LOCALFUNCTIONS_NEDELEC_NEDELEC1STKINDCUBE_HH
4#define DUNE_LOCALFUNCTIONS_NEDELEC_NEDELEC1STKINDCUBE_HH
5
6#include <numeric>
7
10#include <dune/common/math.hh>
11
12#include <dune/geometry/referenceelements.hh>
13#include <dune/geometry/type.hh>
14
15#include <dune/localfunctions/common/localbasis.hh>
16#include <dune/localfunctions/common/localfiniteelementtraits.hh>
17#include <dune/localfunctions/common/localinterpolation.hh> // For deprecated makeFunctionWithCallOperator
18#include <dune/localfunctions/common/localkey.hh>
19
20namespace Dune
21{
22namespace Impl
23{
34 template<class D, class R, int dim, int k>
35 class Nedelec1stKindCubeLocalBasis
36 {
37 // Number of edges of the reference cube
38 constexpr static std::size_t numberOfEdges = power(2,dim-1)*dim;
39
40 public:
41 using Traits = LocalBasisTraits<D,dim,FieldVector<D,dim>,
42 R,dim,FieldVector<R,dim>,
43 FieldMatrix<R,dim,dim> >;
44
51 Nedelec1stKindCubeLocalBasis()
52 {
53 std::fill(edgeOrientation_.begin(), edgeOrientation_.end(), 1.0);
54 }
55
58 Nedelec1stKindCubeLocalBasis(std::bitset<numberOfEdges> edgeOrientation)
59 : Nedelec1stKindCubeLocalBasis()
60 {
61 for (std::size_t i=0; i<edgeOrientation_.size(); i++)
62 edgeOrientation_[i] *= edgeOrientation[i] ? -1.0 : 1.0;
63 }
64
66 static constexpr unsigned int size()
67 {
68 static_assert(dim==2 || dim==3, "Nedelec shape functions are implemented only for 2d and 3d cubes.");
69 if (dim==2)
70 return 2*k * (k+1);
71 if (dim==3)
72 return 3*k * (k+1) * (k+1);
73 }
74
80 void evaluateFunction(const typename Traits::DomainType& in,
81 std::vector<typename Traits::RangeType>& out) const
82 {
83 static_assert(k==1, "Evaluating Nédélec shape functions is implemented only for first order.");
84 out.resize(size());
85
86 if (dim==2)
87 {
88 // First-order Nédélec shape functions on a square are of the form
89 //
90 // (a, b)^T + (c y, d x)^T, a, b, c, d \in R
91 //
92 // The following coefficients create the four basis vectors
93 // that are dual to the edge degrees of freedom:
94 //
95 // a[0] = 0 b[0] = 1 c[0] = 0 d[0] = -1
96 // a[1] = 0 b[1] = 0 c[1] = 0 d[1] = 1
97 // a[2] = 1 b[2] = 0 c[2] = 0 d[2] = -1
98 // a[3] = 0 b[3] = 0 c[3] = 0 d[3] = 1
99
100 out[0] = { 0, D(1) - in[0]};
101 out[1] = { 0, in[0]};
102 out[2] = { D(1) - in[1], 0};
103 out[3] = { in[1], 0};
104 }
105
106 if constexpr (dim==3)
107 {
108 // First-order Nédélec shape functions on a cube are of the form
109 //
110 // (e1 yz)
111 // a + b x + c y + d z + (e2 xz) , a, b, c, d \in R^3 and b[0]=c[1]=d[2]=0
112 // (e3 xy)
113 //
114 // The following coefficients create the twelve basis vectors
115 // that are dual to the edge degrees of freedom:
116 //
117 // a[0] = { 0, 0, 1} b[0] = { 0, 0, -1} c[0] = { 0, 0, -1} d[0] = { 0, 0, 0} e[0] = { 0, 0, 1}
118 // a[1] = { 0, 0, 0} b[1] = { 0, 0, 1} c[1] = { 0, 0, 0} d[1] = { 0, 0, 0} e[1] = { 0, 0, -1}
119 // a[2] = { 0, 0, 0} b[2] = { 0, 0, 0} c[2] = { 0, 0, 1} d[2] = { 0, 0, 0} e[2] = { 0, 0, -1}
120 // a[3] = { 0, 0, 0} b[3] = { 0, 0, 0} c[3] = { 0, 0, 0} d[3] = { 0, 0, 0} e[3] = { 0, 0, 1}
121 //
122 // The following implementation uses these values, and simply
123 // skips all the zeros.
124
125 for (std::size_t i=0; i<out.size(); i++)
126 out[i] = {0,0,0};
127
128 out[0][2] = { 1 - in[0] - in[1] + in[0]*in[1]};
129 out[1][2] = { in[0] - in[0]*in[1]};
130 out[2][2] = { in[1] - in[0]*in[1]};
131 out[3][2] = { in[0]*in[1]};
132
133 out[4][1] = { 1 - in[0] - in[2] + in[0]*in[2]};
134 out[5][1] = { in[0] - in[0]*in[2]};
135 out[8][1] = { in[2] - in[0]*in[2]};
136 out[9][1] = { in[0]*in[2]};
137
138 out[6][0] = { 1 - in[1] - in[2] + in[1]*in[2]};
139 out[7][0] = { in[1] - in[1]*in[2]};
140 out[10][0] = { in[2] - in[1]*in[2]};
141 out[11][0] = { in[1]*in[2]};
142 }
143
144 for (std::size_t i=0; i<out.size(); i++)
145 out[i] *= edgeOrientation_[i];
146 }
147
153 void evaluateJacobian(const typename Traits::DomainType& in,
154 std::vector<typename Traits::JacobianType>& out) const
155 {
156 out.resize(size());
157 if (dim==2)
158 {
159 for (std::size_t i=0; i<out.size(); i++)
160 for (std::size_t j=0; j<dim; j++)
161 out[i][j] = { 0, 0};
162
163 out[0][1] = { -1, 0};
164 out[1][1] = { 1, 0};
165
166 out[2][0] = { 0, -1};
167 out[3][0] = { 0, 1};
168 }
169 if (dim==3)
170 {
171 for (std::size_t i=0; i<out.size(); i++)
172 for(std::size_t j=0;j<dim; j++)
173 out[i][j] = {0,0,0};
174
175
176 out[0][2] = {-1 +in[1], -1 + in[0], 0};
177 out[1][2] = { 1 -in[1], - in[0], 0};
178 out[2][2] = { -in[1], 1 - in[0], 0};
179 out[3][2] = { in[1], in[0], 0};
180
181 out[4][1] = {-1 +in[2], 0, -1 + in[0]};
182 out[5][1] = { 1 -in[2], 0, - in[0]};
183 out[8][1] = { -in[2], 0, 1 - in[0]};
184 out[9][1] = { in[2], 0, in[0]};
185
186 out[6][0] = { 0, -1 + in[2], -1 + in[1]};
187 out[7][0] = { 0, 1 - in[2], - in[1]};
188 out[10][0] = { 0, - in[2], 1 - in[1]};
189 out[11][0] = { 0, in[2], in[1]};
190
191 }
192
193 for (std::size_t i=0; i<out.size(); i++)
194 out[i] *= edgeOrientation_[i];
195
196 }
197
204 void partial(const std::array<unsigned int, dim>& order,
205 const typename Traits::DomainType& in,
206 std::vector<typename Traits::RangeType>& out) const
207 {
208 auto totalOrder = std::accumulate(order.begin(), order.end(), 0);
209 if (totalOrder == 0) {
210 evaluateFunction(in, out);
211 } else if (totalOrder == 1) {
212 auto const direction = std::distance(order.begin(), std::find(order.begin(), order.end(), 1));
213 out.resize(size());
214
215 if (dim==2)
216 {
217 if (direction==0)
218 {
219 out[0] = { 0, -1};
220 out[1] = { 0, 1};
221 out[2] = { 0, 0};
222 out[3] = { 0, 0};
223 }
224 else
225 {
226 out[0] = { 0, 0};
227 out[1] = { 0, 0};
228 out[2] = { -1, 0};
229 out[3] = { 1, 0};
230 }
231 }
232
233 if (dim==3)
234 {
235 switch (direction)
236 {
237 case 0:
238 out[0] = { 0, 0, -1 +in[1]};
239 out[1] = { 0, 0, 1 -in[1]};
240 out[2] = { 0, 0, -in[1]};
241 out[3] = { 0, 0, in[1]};
242
243 out[4] = { 0, -1 +in[2], 0};
244 out[5] = { 0, 1 -in[2], 0};
245 out[8] = { 0, -in[2], 0};
246 out[9] = { 0, in[2], 0};
247
248 out[6] = {0,0,0};
249 out[7] = {0,0,0};
250 out[10] = {0,0,0};
251 out[11] = {0,0,0};
252 break;
253
254 case 1:
255 out[0] = { 0, 0, -1 + in[0]};
256 out[1] = { 0, 0, - in[0]};
257 out[2] = { 0, 0, 1 - in[0]};
258 out[3] = { 0, 0, in[0]};
259
260 out[4] = {0,0,0};
261 out[5] = {0,0,0};
262 out[8] = {0,0,0};
263 out[9] = {0,0,0};
264
265 out[6] = { -1 + in[2], 0, 0};
266 out[7] = { 1 - in[2], 0, 0};
267 out[10] = { - in[2], 0, 0};
268 out[11] = { in[2], 0, 0};
269 break;
270
271 case 2:
272 out[0] = {0,0,0};
273 out[1] = {0,0,0};
274 out[2] = {0,0,0};
275 out[3] = {0,0,0};
276
277 out[4] = { 0, -1 + in[0], 0};
278 out[5] = { 0, - in[0], 0};
279 out[8] = { 0, 1 - in[0], 0};
280 out[9] = { 0, in[0], 0};
281
282 out[6] = { -1 + in[1], 0, 0};
283 out[7] = { - in[1], 0, 0};
284 out[10] = { 1 - in[1], 0, 0};
285 out[11] = { in[1], 0, 0};
286 break;
287 }
288 }
289
290 for (std::size_t i=0; i<out.size(); i++)
291 out[i] *= edgeOrientation_[i];
292
293 } else if (totalOrder == 2) {
294 out.resize(size());
295
296 if (dim==2)
297 for (std::size_t i = 0; i < size(); ++i)
298 for (std::size_t j = 0; j < dim; ++j)
299 out[i][j] = 0;
300
301 if (dim==3)
302 {
303 for(size_t i=0; i<out.size(); i++)
304 out[i] = { 0, 0, 0};
305
306 //case (1,1,0):
307 if( order[0] == 1 and order[1]==1)
308 {
309 out[0] = { 0, 0, 1};
310 out[1] = { 0, 0, -1};
311 out[2] = { 0, 0, -1};
312 out[3] = { 0, 0, 1};
313 }
314
315 //case (1,0,1):
316 if( order[0] == 1 and order[2]==1)
317 {
318 out[4] = { 0, 1, 0};
319 out[5] = { 0, -1, 0};
320 out[8] = { 0, -1, 0};
321 out[9] = { 0, 1, 0};
322 }
323
324 //case (0,1,1):
325 if( order[1] == 1 and order[2]==1)
326 {
327 out[6] = { 1, 0, 0};
328 out[7] = { -1, 0, 0};
329 out[10] = { -1, 0, 0};
330 out[11] = { 1, 0, 0};
331 }
332
333 for (std::size_t i=0; i<out.size(); i++)
334 out[i] *= edgeOrientation_[i];
335 }
336
337
338 }else {
339 out.resize(size());
340 for (std::size_t i = 0; i < size(); ++i)
341 for (std::size_t j = 0; j < dim; ++j)
342 out[i][j] = 0;
343 }
344
345 }
346
348 unsigned int order() const
349 {
350 if (dim==2)
351 return 2*k-1;
352 if (dim==3)
353 return 3*k-1;
354 }
355
356 private:
357
358 // Orientations of the cube edges
359 std::array<R,numberOfEdges> edgeOrientation_;
360 };
361
362
367 template <int dim, int k>
368 class Nedelec1stKindCubeLocalCoefficients
369 {
370 public:
372 Nedelec1stKindCubeLocalCoefficients ()
373 : localKey_(size())
374 {
375 static_assert(k==1, "Only first-order Nédélec local coefficients are implemented.");
376 // Assign all degrees of freedom to edges
377 // TODO: This is correct only for first-order Nédélec elements
378 for (std::size_t i=0; i<size(); i++)
379 localKey_[i] = LocalKey(i,dim-1,0);
380 }
381
383 std::size_t size() const
384 {
385 static_assert(dim==2 || dim==3, "Nédélec shape functions are implemented only for 2d and 3d cubes.");
386 return (dim==2) ? 2*k * (k+1)
387 : 3*k * (k+1) * (k+1);
388 }
389
392 const LocalKey& localKey (std::size_t i) const
393 {
394 return localKey_[i];
395 }
396
397 private:
398 std::vector<LocalKey> localKey_;
399 };
400
405 template<class LB>
406 class Nedelec1stKindCubeLocalInterpolation
407 {
408 static constexpr auto dim = LB::Traits::dimDomain;
409 static constexpr auto size = LB::size();
410
411 // Number of edges of the reference cube
412 constexpr static std::size_t numberOfEdges = power(2,dim-1)*dim;
413
414 public:
415
417 Nedelec1stKindCubeLocalInterpolation (std::bitset<numberOfEdges> s = 0)
418 {
419 auto refElement = Dune::referenceElement<double,dim>(GeometryTypes::cube(dim));
420
421 for (std::size_t i=0; i<numberOfEdges; i++)
422 m_[i] = refElement.position(i,dim-1);
423
424 for (std::size_t i=0; i<numberOfEdges; i++)
425 {
426 auto vertexIterator = refElement.subEntities(i,dim-1,dim).begin();
427 auto v0 = *vertexIterator;
428 auto v1 = *(++vertexIterator);
429
430 // By default, edges point from the vertex with the smaller index
431 // to the vertex with the larger index.
432 if (v0>v1)
433 std::swap(v0,v1);
434 edge_[i] = refElement.position(v1,dim) - refElement.position(v0,dim);
435 edge_[i] *= (s[i]) ? -1.0 : 1.0;
436 }
437 }
438
444 template<typename F, typename C>
445 void interpolate (const F& ff, std::vector<C>& out) const
446 {
447 out.resize(size);
448 auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
449
450 for (std::size_t i=0; i<size; i++)
451 {
452 auto y = f(m_[i]);
453 out[i] = 0.0;
454 for (int j=0; j<dim; j++)
455 out[i] += y[j]*edge_[i][j];
456 }
457 }
458
459 private:
460 // Edge midpoints of the reference cube
461 std::array<typename LB::Traits::DomainType, numberOfEdges> m_;
462 // Edges of the reference cube
463 std::array<typename LB::Traits::DomainType, numberOfEdges> edge_;
464 };
465
466}
467
468
492 template<class D, class R, int dim, int k>
494 {
495 public:
497 Impl::Nedelec1stKindCubeLocalCoefficients<dim,k>,
498 Impl::Nedelec1stKindCubeLocalInterpolation<Impl::Nedelec1stKindCubeLocalBasis<D,R,dim,k> > >;
499
500 static_assert(dim==2 || dim==3, "Nedelec elements are only implemented for 2d and 3d elements.");
501 static_assert(k==1, "Nedelec elements of the first kind are currently only implemented for order k==1.");
502
506
512 Nedelec1stKindCubeLocalFiniteElement (std::bitset<power(2,dim-1)*dim> s) :
513 basis_(s),
514 interpolation_(s)
515 {}
516
517 const typename Traits::LocalBasisType& localBasis () const
518 {
519 return basis_;
520 }
521
522 const typename Traits::LocalCoefficientsType& localCoefficients () const
523 {
524 return coefficients_;
525 }
526
527 const typename Traits::LocalInterpolationType& localInterpolation () const
528 {
529 return interpolation_;
530 }
531
532 static constexpr unsigned int size ()
533 {
534 return Traits::LocalBasisType::size();
535 }
536
537 static constexpr GeometryType type ()
538 {
539 return GeometryTypes::cube(dim);
540 }
541
542 private:
543 typename Traits::LocalBasisType basis_;
544 typename Traits::LocalCoefficientsType coefficients_;
545 typename Traits::LocalInterpolationType interpolation_;
546 };
547
548}
549
550#endif
Nédélec elements of the first kind for cube elements.
Definition: nedelec1stkindcube.hh:494
Nedelec1stKindCubeLocalFiniteElement()=default
Default constructor.
Nedelec1stKindCubeLocalFiniteElement(std::bitset< power(2, dim-1) *dim > s)
Constructor with explicitly given edge orientations.
Definition: nedelec1stkindcube.hh:512
GeometryType
Type representing VTK's entity geometry types.
Definition: common.hh:130
Implements a matrix constructed from a given type representing a field and compile-time given number ...
Implements a vector constructed from a given type representing a field and a compile-time given size.
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:470
void interpolate(const F &f, const GFS &gfs, XG &xg)
interpolation from a given grid function
Definition: interpolate.hh:177
constexpr T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:289
Some useful basic math stuff.
Dune namespace.
Definition: alignedallocator.hh:11
constexpr Mantissa power(Mantissa m, Exponent p)
Power method for integer exponents.
Definition: math.hh:73
D DomainType
domain type
Definition: localbasis.hh:43
traits helper struct
Definition: localfiniteelementtraits.hh:11
LB LocalBasisType
Definition: localfiniteelementtraits.hh:14
LC LocalCoefficientsType
Definition: localfiniteelementtraits.hh:18
LI LocalInterpolationType
Definition: localfiniteelementtraits.hh:22
A unique label for each type of element that can occur in a grid.
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)