DUNE PDELab (2.8)

math.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_MATH_HH
4#define DUNE_MATH_HH
5
10#include <cmath>
11#include <complex>
12#include <limits>
13#include <type_traits>
14
16
17namespace Dune
18{
19
30 template< class T >
32 {
36 static const T e ()
37 {
38 using std::exp;
39 static const T e = exp( T( 1 ) );
40 return e;
41 }
42
46 static const T pi ()
47 {
48 using std::acos;
49 static const T pi = acos( T( -1 ) );
50 return pi;
51 }
52 };
53
54
62 template< class Field >
64 : public StandardMathematicalConstants<Field>
65 {};
66
67
72 template <class Mantissa, class Exponent>
73 constexpr Mantissa power(Mantissa m, Exponent p)
74 {
75 static_assert(std::numeric_limits<Exponent>::is_integer, "Exponent must be an integer type!");
76
77 auto result = Mantissa(1);
78 auto absp = (p<0) ? -p : p; // This is simply abs, but std::abs is not constexpr
79 for (Exponent i = Exponent(0); i<absp; i++)
80 result *= m;
81
82 if (p<0)
83 result = Mantissa(1)/result;
84
85 return result;
86 }
87
89 template <int m>
90 struct Factorial
91 {
93 enum { factorial = m * Factorial<m-1>::factorial };
94 };
95
97 template <>
98 struct Factorial<0>
99 {
100 // 0! = 1
101 enum { factorial = 1 };
102 };
103
104
106 // T has to be an integral type
107 template<class T>
108 constexpr inline static T factorial(const T& n) noexcept
109 {
110 static_assert(std::numeric_limits<T>::is_integer, "`factorial(n)` has to be called with an integer type.");
111 T fac = 1;
112 for(T k = 0; k < n; ++k)
113 fac *= k+1;
114 return fac;
115 }
116
118 template<class T, T n>
119 constexpr inline static auto factorial (std::integral_constant<T, n>) noexcept
120 {
121 return std::integral_constant<T, factorial(n)>{};
122 }
123
124
126 // T has to be an integral type
127 template<class T>
128 constexpr inline static T binomial (const T& n, const T& k) noexcept
129 {
130 static_assert(std::numeric_limits<T>::is_integer, "`binomial(n, k)` has to be called with an integer type.");
131
132 if( k < 0 || k > n )
133 return 0;
134
135 if (2*k > n)
136 return binomial(n, n-k);
137
138 T bin = 1;
139 for(auto i = n-k; i < n; ++i)
140 bin *= i+1;
141 return bin / factorial(k);
142 }
143
145 template<class T, T n, T k>
146 constexpr inline static auto binomial (std::integral_constant<T, n>, std::integral_constant<T, k>) noexcept
147 {
148 return std::integral_constant<T, binomial(n, k)>{};
149 }
150
151 template<class T, T n>
152 constexpr inline static auto binomial (std::integral_constant<T, n>, std::integral_constant<T, n>) noexcept
153 {
154 return std::integral_constant<T, (n >= 0 ? 1 : 0)>{};
155 }
156
157
159 // conjugate complex does nothing for non-complex types
160 template<class K>
161 inline K conjugateComplex (const K& x)
162 {
163 return x;
164 }
165
166#ifndef DOXYGEN
167 // specialization for complex
168 template<class K>
169 inline std::complex<K> conjugateComplex (const std::complex<K>& c)
170 {
171 return std::complex<K>(c.real(),-c.imag());
172 }
173#endif
174
176 template <class T>
177 int sign(const T& val)
178 {
179 return (val < 0 ? -1 : 1);
180 }
181
182
183 namespace Impl {
184 // Returns whether a given type behaves like std::complex<>, i.e. whether
185 // real() and imag() are defined
186 template<class T>
187 struct isComplexLike {
188 private:
189 template<class U>
190 static auto test(U* u) -> decltype(u->real(), u->imag(), std::true_type());
191
192 template<class U>
193 static auto test(...) -> decltype(std::false_type());
194
195 public:
196 static const bool value = decltype(test<T>(0))::value;
197 };
198 } // namespace Impl
199
201
224 namespace MathOverloads {
225
227 struct ADLTag {};
228
229#define DUNE_COMMON_MATH_ISFUNCTION(function, stdfunction) \
230 template<class T> \
231 auto function(const T &t, PriorityTag<1>, ADLTag) \
232 -> decltype(function(t)) { \
233 return function(t); \
234 } \
235 template<class T> \
236 auto function(const T &t, PriorityTag<0>, ADLTag) { \
237 using std::stdfunction; \
238 return stdfunction(t); \
239 } \
240 static_assert(true, "Require semicolon to unconfuse editors")
241
242 DUNE_COMMON_MATH_ISFUNCTION(isNaN,isnan);
243 DUNE_COMMON_MATH_ISFUNCTION(isInf,isinf);
244 DUNE_COMMON_MATH_ISFUNCTION(isFinite,isfinite);
245#undef DUNE_COMMON_MATH_ISFUNCTION
246
247 template<class T>
248 auto isUnordered(const T &t1, const T &t2, PriorityTag<1>, ADLTag)
249 -> decltype(isUnordered(t1, t2)) {
250 return isUnordered(t1, t2);
251 }
252
253 template<class T>
254 auto isUnordered(const T &t1, const T &t2, PriorityTag<0>, ADLTag) {
255 using std::isunordered;
256 return isunordered(t1, t2);
257 }
258 }
259
260 namespace MathImpl {
261
262 // NOTE: it is important that these functors have names different from the
263 // names of the functions they are forwarding to. Otherwise the
264 // unqualified call would find the functor type, not a function, and ADL
265 // would never be attempted.
266#define DUNE_COMMON_MATH_ISFUNCTION_FUNCTOR(function) \
267 struct function##Impl { \
268 template<class T> \
269 constexpr auto operator()(const T &t) const { \
270 return function(t, PriorityTag<10>{}, MathOverloads::ADLTag{}); \
271 } \
272 }; \
273 static_assert(true, "Require semicolon to unconfuse editors")
274
275 DUNE_COMMON_MATH_ISFUNCTION_FUNCTOR(isNaN);
276 DUNE_COMMON_MATH_ISFUNCTION_FUNCTOR(isInf);
277 DUNE_COMMON_MATH_ISFUNCTION_FUNCTOR(isFinite);
278#undef DUNE_COMMON_MATH_ISFUNCTION_FUNCTOR
279
280 struct isUnorderedImpl {
281 template<class T>
282 constexpr auto operator()(const T &t1, const T &t2) const {
283 return isUnordered(t1, t2, PriorityTag<10>{}, MathOverloads::ADLTag{});
284 }
285 };
286
287 } //MathImpl
288
289
290 namespace Impl {
291 /* This helper has a math functor as a static constexpr member. Doing
292 this as a static member of a template struct means we can do this
293 without violating the ODR or putting the definition into a seperate
294 compilation unit, while still still ensuring the functor is the same
295 lvalue across all compilation units.
296 */
297 template<class T>
298 struct MathDummy
299 {
300 static constexpr T value{};
301 };
302
303 template<class T>
304 constexpr T MathDummy<T>::value;
305
306 } //namespace Impl
307
308 namespace {
309 /* Provide the math functors directly in the `Dune` namespace.
310
311 This actually declares a different name in each translation unit, but
312 they all resolve to the same lvalue.
313 */
314
316
320 constexpr auto const &isNaN = Impl::MathDummy<MathImpl::isNaNImpl>::value;
321
323
327 constexpr auto const &isInf = Impl::MathDummy<MathImpl::isInfImpl>::value;
328
330
334 constexpr auto const &isFinite = Impl::MathDummy<MathImpl::isFiniteImpl>::value;
335
337
342 constexpr auto const &isUnordered = Impl::MathDummy<MathImpl::isUnorderedImpl>::value;
343 }
344
345 namespace MathOverloads {
346 /*Overloads for complex types*/
347 template<class T, class = std::enable_if_t<Impl::isComplexLike<T>::value> >
348 auto isNaN(const T &t, PriorityTag<2>, ADLTag) {
349 return Dune::isNaN(real(t)) || Dune::isNaN(imag(t));
350 }
351
352 template<class T, class = std::enable_if_t<Impl::isComplexLike<T>::value> >
353 auto isInf(const T &t, PriorityTag<2>, ADLTag) {
354 return Dune::isInf(real(t)) || Dune::isInf(imag(t));
355 }
356
357 template<class T, class = std::enable_if_t<Impl::isComplexLike<T>::value> >
358 auto isFinite(const T &t, PriorityTag<2>, ADLTag) {
359 return Dune::isFinite(real(t)) && Dune::isFinite(imag(t));
360 }
361 } //MathOverloads
362}
363
364#endif // #ifndef DUNE_MATH_HH
Dune namespace.
Definition: alignedallocator.hh:11
static constexpr T binomial(const T &n, const T &k) noexcept
calculate the binomial coefficient n over k as a constexpr
Definition: math.hh:128
constexpr Mantissa power(Mantissa m, Exponent p)
Power method for integer exponents.
Definition: math.hh:73
static constexpr T factorial(const T &n) noexcept
calculate the factorial of n as a constexpr
Definition: math.hh:108
int sign(const T &val)
Return the sign of the value.
Definition: math.hh:177
K conjugateComplex(const K &x)
compute conjugate complex of x
Definition: math.hh:161
Calculates the factorial of m at compile time.
Definition: math.hh:91
Tag to make sure the functions in this namespace can be found by ADL.
Definition: math.hh:227
Provides commonly used mathematical constants.
Definition: math.hh:65
Helper class for tagging priorities.
Definition: typeutilities.hh:85
Helper class for tagging priorities.
Definition: typeutilities.hh:71
Standard implementation of MathematicalConstants.
Definition: math.hh:32
static const T e()
Euler's number.
Definition: math.hh:36
static const T pi()
Archimedes' constant.
Definition: math.hh:46
Utilities for type computations, constraining overloads, ...
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)