DUNE PDELab (2.8)

gsetc.hh
Go to the documentation of this file.
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_ISTL_GSETC_HH
4#define DUNE_ISTL_GSETC_HH
5
6#include <cmath>
7#include <complex>
8#include <iostream>
9#include <iomanip>
10#include <string>
11
12#include <dune/common/hybridutilities.hh>
13
14#include "multitypeblockvector.hh"
15#include "multitypeblockmatrix.hh"
16
17#include "istlexception.hh"
18
19
25namespace Dune {
26
37 //============================================================
38 // parameter types
39 //============================================================
40
42 template<int l>
43 struct BL {
44 enum {recursion_level = l};
45 };
46
47 enum WithDiagType {
48 withdiag=1,
49 nodiag=0
50 };
51
52 enum WithRelaxType {
53 withrelax=1,
54 norelax=0
55 };
56
57 //============================================================
58 // generic triangular solves
59 // consider block decomposition A = L + D + U
60 // we can invert L, L+D, U, U+D
61 // we can apply relaxation or not
62 // we can recurse over a fixed number of levels
63 //============================================================
64
65 // template meta program for triangular solves
66 template<int I, WithDiagType diag, WithRelaxType relax>
67 struct algmeta_btsolve {
68 template<class M, class X, class Y, class K>
69 static void bltsolve (const M& A, X& v, const Y& d, const K& w)
70 {
71 // iterator types
72 typedef typename M::ConstRowIterator rowiterator;
73 typedef typename M::ConstColIterator coliterator;
74 typedef typename Y::block_type bblock;
75
76 // local solve at each block and immediate update
77 rowiterator endi=A.end();
78 for (rowiterator i=A.begin(); i!=endi; ++i)
79 {
80 bblock rhs(d[i.index()]);
81 coliterator j;
82 for (j=(*i).begin(); j.index()<i.index(); ++j)
83 (*j).mmv(v[j.index()],rhs);
84 algmeta_btsolve<I-1,diag,relax>::bltsolve(*j,v[i.index()],rhs,w);
85 }
86 }
87 template<class M, class X, class Y, class K>
88 static void butsolve (const M& A, X& v, const Y& d, const K& w)
89 {
90 // iterator types
91 typedef typename M::ConstRowIterator rowiterator;
92 typedef typename M::ConstColIterator coliterator;
93 typedef typename Y::block_type bblock;
94
95 // local solve at each block and immediate update
96 rowiterator rendi=A.beforeBegin();
97 for (rowiterator i=A.beforeEnd(); i!=rendi; --i)
98 {
99 bblock rhs(d[i.index()]);
100 coliterator j;
101 for (j=(*i).beforeEnd(); j.index()>i.index(); --j)
102 (*j).mmv(v[j.index()],rhs);
103 algmeta_btsolve<I-1,diag,relax>::butsolve(*j,v[i.index()],rhs,w);
104 }
105 }
106 };
107
108 // recursion end ...
109 template<>
110 struct algmeta_btsolve<0,withdiag,withrelax> {
111 template<class M, class X, class Y, class K>
112 static void bltsolve (const M& A, X& v, const Y& d, const K& w)
113 {
114 A.solve(v,d);
115 v *= w;
116 }
117 template<class M, class X, class Y, class K>
118 static void butsolve (const M& A, X& v, const Y& d, const K& w)
119 {
120 A.solve(v,d);
121 v *= w;
122 }
123 };
124 template<>
125 struct algmeta_btsolve<0,withdiag,norelax> {
126 template<class M, class X, class Y, class K>
127 static void bltsolve (const M& A, X& v, const Y& d, const K& /*w*/)
128 {
129 A.solve(v,d);
130 }
131 template<class M, class X, class Y, class K>
132 static void butsolve (const M& A, X& v, const Y& d, const K& /*w*/)
133 {
134 A.solve(v,d);
135 }
136 };
137 template<>
138 struct algmeta_btsolve<0,nodiag,withrelax> {
139 template<class M, class X, class Y, class K>
140 static void bltsolve (const M& /*A*/, X& v, const Y& d, const K& w)
141 {
142 v = d;
143 v *= w;
144 }
145 template<class M, class X, class Y, class K>
146 static void butsolve (const M& /*A*/, X& v, const Y& d, const K& w)
147 {
148 v = d;
149 v *= w;
150 }
151 };
152 template<>
153 struct algmeta_btsolve<0,nodiag,norelax> {
154 template<class M, class X, class Y, class K>
155 static void bltsolve (const M& /*A*/, X& v, const Y& d, const K& /*w*/)
156 {
157 v = d;
158 }
159 template<class M, class X, class Y, class K>
160 static void butsolve (const M& /*A*/, X& v, const Y& d, const K& /*w*/)
161 {
162 v = d;
163 }
164 };
165
166
167 // user calls
168
169 // default block recursion level = 1
170
172 template<class M, class X, class Y>
173 void bltsolve (const M& A, X& v, const Y& d)
174 {
175 typename X::field_type w=1;
177 }
179 template<class M, class X, class Y, class K>
180 void bltsolve (const M& A, X& v, const Y& d, const K& w)
181 {
183 }
185 template<class M, class X, class Y>
186 void ubltsolve (const M& A, X& v, const Y& d)
187 {
188 typename X::field_type w=1;
190 }
192 template<class M, class X, class Y, class K>
193 void ubltsolve (const M& A, X& v, const Y& d, const K& w)
194 {
196 }
197
199 template<class M, class X, class Y>
200 void butsolve (const M& A, X& v, const Y& d)
201 {
202 typename X::field_type w=1;
204 }
206 template<class M, class X, class Y, class K>
207 void butsolve (const M& A, X& v, const Y& d, const K& w)
208 {
210 }
212 template<class M, class X, class Y>
213 void ubutsolve (const M& A, X& v, const Y& d)
214 {
215 typename X::field_type w=1;
217 }
219 template<class M, class X, class Y, class K>
220 void ubutsolve (const M& A, X& v, const Y& d, const K& w)
221 {
223 }
224
225 // general block recursion level >= 0
226
228 template<class M, class X, class Y, int l>
229 void bltsolve (const M& A, X& v, const Y& d, BL<l> /*bl*/)
230 {
231 typename X::field_type w=1;
233 }
235 template<class M, class X, class Y, class K, int l>
236 void bltsolve (const M& A, X& v, const Y& d, const K& w, BL<l> /*bl*/)
237 {
239 }
241 template<class M, class X, class Y, int l>
242 void ubltsolve (const M& A, X& v, const Y& d, BL<l> /*bl*/)
243 {
244 typename X::field_type w=1;
246 }
248 template<class M, class X, class Y, class K, int l>
249 void ubltsolve (const M& A, X& v, const Y& d, const K& w, BL<l> /*bl*/)
250 {
252 }
253
255 template<class M, class X, class Y, int l>
256 void butsolve (const M& A, X& v, const Y& d, BL<l> bl)
257 {
258 typename X::field_type w=1;
260 }
262 template<class M, class X, class Y, class K, int l>
263 void butsolve (const M& A, X& v, const Y& d, const K& w, BL<l> bl)
264 {
266 }
268 template<class M, class X, class Y, int l>
269 void ubutsolve (const M& A, X& v, const Y& d, BL<l> bl)
270 {
271 typename X::field_type w=1;
273 }
275 template<class M, class X, class Y, class K, int l>
276 void ubutsolve (const M& A, X& v, const Y& d, const K& w, BL<l> bl)
277 {
279 }
280
281
282
283 //============================================================
284 // generic block diagonal solves
285 // consider block decomposition A = L + D + U
286 // we can apply relaxation or not
287 // we can recurse over a fixed number of levels
288 //============================================================
289
290 // template meta program for diagonal solves
291 template<int I, WithRelaxType relax>
292 struct algmeta_bdsolve {
293 template<class M, class X, class Y, class K>
294 static void bdsolve (const M& A, X& v, const Y& d, const K& w)
295 {
296 // iterator types
297 typedef typename M::ConstRowIterator rowiterator;
298 typedef typename M::ConstColIterator coliterator;
299
300 // local solve at each block and immediate update
301 rowiterator rendi=A.beforeBegin();
302 for (rowiterator i=A.beforeEnd(); i!=rendi; --i)
303 {
304 coliterator ii=(*i).find(i.index());
305 algmeta_bdsolve<I-1,relax>::bdsolve(*ii,v[i.index()],d[i.index()],w);
306 }
307 }
308 };
309
310 // recursion end ...
311 template<>
312 struct algmeta_bdsolve<0,withrelax> {
313 template<class M, class X, class Y, class K>
314 static void bdsolve (const M& A, X& v, const Y& d, const K& w)
315 {
316 A.solve(v,d);
317 v *= w;
318 }
319 };
320 template<>
321 struct algmeta_bdsolve<0,norelax> {
322 template<class M, class X, class Y, class K>
323 static void bdsolve (const M& A, X& v, const Y& d, const K& /*w*/)
324 {
325 A.solve(v,d);
326 }
327 };
328
329 // user calls
330
331 // default block recursion level = 1
332
334 template<class M, class X, class Y>
335 void bdsolve (const M& A, X& v, const Y& d)
336 {
337 typename X::field_type w=1;
339 }
341 template<class M, class X, class Y, class K>
342 void bdsolve (const M& A, X& v, const Y& d, const K& w)
343 {
345 }
346
347 // general block recursion level >= 0
348
350 template<class M, class X, class Y, int l>
351 void bdsolve (const M& A, X& v, const Y& d, BL<l> /*bl*/)
352 {
353 typename X::field_type w=1;
355 }
357 template<class M, class X, class Y, class K, int l>
358 void bdsolve (const M& A, X& v, const Y& d, const K& w, BL<l> /*bl*/)
359 {
361 }
362
363
364 //============================================================
365 // generic steps of iteration methods
366 // Jacobi, Gauss-Seidel, SOR, SSOR
367 // work directly on Ax=b, ie solve M(x^{i+1}-x^i) = w (b-Ax^i)
368 // we can recurse over a fixed number of levels
369 //============================================================
370
371 // template meta program for iterative solver steps
372 template<int I, typename M>
373 struct algmeta_itsteps {
374
375 template<class X, class Y, class K>
376 static void dbgs (const M& A, X& x, const Y& b, const K& w)
377 {
378 typedef typename M::ConstRowIterator rowiterator;
379 typedef typename M::ConstColIterator coliterator;
380 typedef typename Y::block_type bblock;
381 bblock rhs;
382
383 X xold(x); // remember old x
384
385 rowiterator endi=A.end();
386 for (rowiterator i=A.begin(); i!=endi; ++i)
387 {
388 rhs = b[i.index()]; // rhs = b_i
389 coliterator endj=(*i).end();
390 coliterator j=(*i).begin();
391 if constexpr (IsNumber<typename M::block_type>())
392 {
393 for (; j.index()<i.index(); ++j)
394 rhs -= (*j) * x[j.index()];
395 coliterator diag=j++; // *diag = a_ii and increment coliterator j from a_ii to a_i+1,i to skip diagonal
396 for (; j != endj; ++j)
397 rhs -= (*j) * x[j.index()];
398 x[i.index()] = rhs / (*diag);
399 }
400 else
401 {
402 for (; j.index()<i.index(); ++j) // iterate over a_ij with j < i
403 (*j).mmv(x[j.index()],rhs); // rhs -= sum_{j<i} a_ij * xnew_j
404 coliterator diag=j++; // *diag = a_ii and increment coliterator j from a_ii to a_i+1,i to skip diagonal
405 for (; j != endj; ++j) // iterate over a_ij with j > i
406 (*j).mmv(x[j.index()],rhs); // rhs -= sum_{j>i} a_ij * xold_j
407 algmeta_itsteps<I-1,typename M::block_type>::dbgs(*diag,x[i.index()],rhs,w); // if I==1: xnew_i = rhs/a_ii
408 }
409 }
410 // next two lines: xnew_i = w / a_ii * (b_i - sum_{j<i} a_ij * xnew_j - sum_{j>=i} a_ij * xold_j) + (1-w)*xold;
411 x *= w;
412 x.axpy(K(1)-w,xold);
413 }
414
415 template<class X, class Y, class K>
416 static void bsorf (const M& A, X& x, const Y& b, const K& w)
417 {
418 typedef typename M::ConstRowIterator rowiterator;
419 typedef typename M::ConstColIterator coliterator;
420 typedef typename Y::block_type bblock;
421 typedef typename X::block_type xblock;
422 bblock rhs;
423 xblock v;
424
425 // Initialize nested data structure if there are entries
426 if(A.begin()!=A.end())
427 v=x[0];
428
429 rowiterator endi=A.end();
430 for (rowiterator i=A.begin(); i!=endi; ++i)
431 {
432 rhs = b[i.index()]; // rhs = b_i
433 coliterator endj=(*i).end(); // iterate over a_ij with j < i
434 coliterator j=(*i).begin();
435 if constexpr (IsNumber<typename M::block_type>())
436 {
437 for (; j.index()<i.index(); ++j)
438 rhs -= (*j) * x[j.index()]; // rhs -= sum_{j<i} a_ij * xnew_j
439 coliterator diag=j; // *diag = a_ii
440 for (; j!=endj; ++j)
441 rhs -= (*j) * x[j.index()]; // rhs -= sum_{j<i} a_ij * xnew_j
442 v = rhs / (*diag);
443 x[i.index()] += w*v; // x_i = w / a_ii * (b_i - sum_{j<i} a_ij * xnew_j - sum_{j>=i} a_ij * xold_j)
444 }
445 else
446 {
447 for (; j.index()<i.index(); ++j)
448 (*j).mmv(x[j.index()],rhs); // rhs -= sum_{j<i} a_ij * xnew_j
449 coliterator diag=j; // *diag = a_ii
450 for (; j!=endj; ++j)
451 (*j).mmv(x[j.index()],rhs); // rhs -= sum_{j<i} a_ij * xnew_j
452 algmeta_itsteps<I-1,typename M::block_type>::bsorf(*diag,v,rhs,w); // if blocksize I==1: v = rhs/a_ii
453 x[i.index()].axpy(w,v); // x_i = w / a_ii * (b_i - sum_{j<i} a_ij * xnew_j - sum_{j>=i} a_ij * xold_j)
454 }
455 }
456 }
457
458 template<class X, class Y, class K>
459 static void bsorb (const M& A, X& x, const Y& b, const K& w)
460 {
461 typedef typename M::ConstRowIterator rowiterator;
462 typedef typename M::ConstColIterator coliterator;
463 typedef typename Y::block_type bblock;
464 typedef typename X::block_type xblock;
465 bblock rhs;
466 xblock v;
467
468 // Initialize nested data structure if there are entries
469 if(A.begin()!=A.end())
470 v=x[0];
471
472 rowiterator endi=A.beforeBegin();
473 for (rowiterator i=A.beforeEnd(); i!=endi; --i)
474 {
475 rhs = b[i.index()];
476 coliterator endj=(*i).end();
477 coliterator j=(*i).begin();
478 if constexpr (IsNumber<typename M::block_type>())
479 {
480 for (; j.index()<i.index(); ++j)
481 rhs -= (*j) * x[j.index()];
482 coliterator diag=j;
483 for (; j!=endj; ++j)
484 rhs -= (*j) * x[j.index()];
485 v = rhs / (*diag);
486 x[i.index()] += w*v;
487 }
488 else
489 {
490 for (; j.index()<i.index(); ++j)
491 j->mmv(x[j.index()],rhs);
492 coliterator diag=j;
493 for (; j!=endj; ++j)
494 j->mmv(x[j.index()],rhs);
496 x[i.index()].axpy(w,v);
497 }
498 }
499 }
500
501 template<class X, class Y, class K>
502 static void dbjac (const M& A, X& x, const Y& b, const K& w)
503 {
504 typedef typename M::ConstRowIterator rowiterator;
505 typedef typename M::ConstColIterator coliterator;
506 typedef typename Y::block_type bblock;
507 bblock rhs;
508
509 X v(x); // allocate with same size
510
511 rowiterator endi=A.end();
512 for (rowiterator i=A.begin(); i!=endi; ++i)
513 {
514 rhs = b[i.index()];
515 coliterator endj=(*i).end();
516 coliterator j=(*i).begin();
517 if constexpr (IsNumber<typename M::block_type>())
518 {
519 for (; j.index()<i.index(); ++j)
520 rhs -= (*j) * x[j.index()];
521 coliterator diag=j;
522 for (; j!=endj; ++j)
523 rhs -= (*j) * x[j.index()];
524 v[i.index()] = rhs / (*diag);
525 }
526 else
527 {
528 for (; j.index()<i.index(); ++j)
529 j->mmv(x[j.index()],rhs);
530 coliterator diag=j;
531 for (; j!=endj; ++j)
532 j->mmv(x[j.index()],rhs);
534 }
535 }
536 x.axpy(w,v);
537 }
538 };
539 // end of recursion
540 template<typename M>
541 struct algmeta_itsteps<0,M> {
542 template<class X, class Y, class K>
543 static void dbgs (const M& A, X& x, const Y& b, const K& /*w*/)
544 {
545 A.solve(x,b);
546 }
547 template<class X, class Y, class K>
548 static void bsorf (const M& A, X& x, const Y& b, const K& /*w*/)
549 {
550 A.solve(x,b);
551 }
552 template<class X, class Y, class K>
553 static void bsorb (const M& A, X& x, const Y& b, const K& /*w*/)
554 {
555 A.solve(x,b);
556 }
557 template<class X, class Y, class K>
558 static void dbjac (const M& A, X& x, const Y& b, const K& /*w*/)
559 {
560 A.solve(x,b);
561 }
562 };
563
564 template<int I, typename T1, typename... MultiTypeMatrixArgs>
565 struct algmeta_itsteps<I,MultiTypeBlockMatrix<T1, MultiTypeMatrixArgs...>> {
566 template<
567 typename... MultiTypeVectorArgs,
568 class K>
569 static void dbgs (const MultiTypeBlockMatrix<T1, MultiTypeMatrixArgs...>& A,
570 MultiTypeBlockVector<MultiTypeVectorArgs...>& x,
571 const MultiTypeBlockVector<MultiTypeVectorArgs...>& b,
572 const K& w)
573 {
576 }
577
578 template<
579 typename... MultiTypeVectorArgs,
580 class K>
581 static void bsorf (const MultiTypeBlockMatrix<T1, MultiTypeMatrixArgs...>& A,
582 MultiTypeBlockVector<MultiTypeVectorArgs...>& x,
583 const MultiTypeBlockVector<MultiTypeVectorArgs...>& b,
584 const K& w)
585 {
588 }
589
590 template<
591 typename... MultiTypeVectorArgs,
592 class K>
593 static void bsorb (const MultiTypeBlockMatrix<T1, MultiTypeMatrixArgs...>& A,
594 MultiTypeBlockVector<MultiTypeVectorArgs...>& x,
595 const MultiTypeBlockVector<MultiTypeVectorArgs...>& b,
596 const K& w)
597 {
600 }
601
602 template<
603 typename... MultiTypeVectorArgs,
604 class K
605 >
606 static void dbjac (const MultiTypeBlockMatrix<T1, MultiTypeMatrixArgs...>& A,
607 MultiTypeBlockVector<MultiTypeVectorArgs...>& x,
608 const MultiTypeBlockVector<MultiTypeVectorArgs...>& b,
609 const K& w)
610 {
613 }
614 };
615
616 // user calls
617
619 template<class M, class X, class Y, class K>
620 void dbgs (const M& A, X& x, const Y& b, const K& w)
621 {
623 }
625 template<class M, class X, class Y, class K, int l>
626 void dbgs (const M& A, X& x, const Y& b, const K& w, BL<l> /*bl*/)
627 {
629 }
631 template<class M, class X, class Y, class K>
632 void bsorf (const M& A, X& x, const Y& b, const K& w)
633 {
635 }
637 template<class M, class X, class Y, class K, int l>
638 void bsorf (const M& A, X& x, const Y& b, const K& w, BL<l> /*bl*/)
639 {
641 }
643 template<class M, class X, class Y, class K>
644 void bsorb (const M& A, X& x, const Y& b, const K& w)
645 {
647 }
649 template<class M, class X, class Y, class K, int l>
650 void bsorb (const M& A, X& x, const Y& b, const K& w, BL<l> /*bl*/)
651 {
652 algmeta_itsteps<l,typename std::remove_cv<M>::type>::bsorb(A,x,b,w);
653 }
655 template<class M, class X, class Y, class K>
656 void dbjac (const M& A, X& x, const Y& b, const K& w)
657 {
659 }
661 template<class M, class X, class Y, class K, int l>
662 void dbjac (const M& A, X& x, const Y& b, const K& w, BL<l> /*bl*/)
663 {
665 }
666
667
670} // end namespace
671
672#endif
void bltsolve(const M &A, X &v, const Y &d)
block lower triangular solve
Definition: gsetc.hh:173
void bsorb(const M &A, X &x, const Y &b, const K &w)
SSOR step.
Definition: gsetc.hh:644
void ubltsolve(const M &A, X &v, const Y &d)
unit block lower triangular solve
Definition: gsetc.hh:186
void dbjac(const M &A, X &x, const Y &b, const K &w)
Jacobi step.
Definition: gsetc.hh:656
void dbgs(const M &A, X &x, const Y &b, const K &w)
GS step.
Definition: gsetc.hh:620
void bsorf(const M &A, X &x, const Y &b, const K &w, BL< l >)
SOR step.
Definition: gsetc.hh:638
void dbjac(const M &A, X &x, const Y &b, const K &w, BL< l >)
Jacobi step.
Definition: gsetc.hh:662
void dbgs(const M &A, X &x, const Y &b, const K &w, BL< l >)
GS step.
Definition: gsetc.hh:626
void bltsolve(const M &A, X &v, const Y &d, const K &w, BL< l >)
relaxed block lower triangular solve
Definition: gsetc.hh:236
void butsolve(const M &A, X &v, const Y &d, const K &w, BL< l > bl)
relaxed block upper triangular solve
Definition: gsetc.hh:263
void bdsolve(const M &A, X &v, const Y &d)
block diagonal solve, no relaxation
Definition: gsetc.hh:335
void bsorb(const M &A, X &x, const Y &b, const K &w, BL< l >)
Backward SOR step.
Definition: gsetc.hh:650
void bdsolve(const M &A, X &v, const Y &d, const K &w, BL< l >)
block diagonal solve, with relaxation
Definition: gsetc.hh:358
void butsolve(const M &A, X &v, const Y &d)
block upper triangular solve
Definition: gsetc.hh:200
void bsorf(const M &A, X &x, const Y &b, const K &w)
SOR step.
Definition: gsetc.hh:632
void ubutsolve(const M &A, X &v, const Y &d)
unit block upper triangular solve
Definition: gsetc.hh:213
static void dbjac(const TMatrix &A, TVector &x, const TVector &b, const K &w)
Definition: multitypeblockmatrix.hh:566
static void dbgs(const TMatrix &A, TVector &x, const TVector &b, const K &w)
Definition: multitypeblockmatrix.hh:482
static void bsorb(const TMatrix &A, TVector &x, const TVector &b, const K &w)
Definition: multitypeblockmatrix.hh:538
static constexpr size_type N()
Return the number of matrix rows.
Definition: multitypeblockmatrix.hh:62
static void bsorf(const TMatrix &A, TVector &x, const TVector &b, const K &w)
Definition: multitypeblockmatrix.hh:511
Dune namespace.
Definition: alignedallocator.hh:11
compile-time parameter for block recursion depth
Definition: gsetc.hh:43
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)