DUNE PDELab (2.8)

bcrsmatrixbackend.hh
1// -*- tab-width: 4; indent-tabs-mode: nil -*-
2#ifndef DUNE_PDELAB_BACKEND_ISTL_BCRSMATRIXBACKEND_HH
3#define DUNE_PDELAB_BACKEND_ISTL_BCRSMATRIXBACKEND_HH
4
5#include <dune/pdelab/backend/istl/bcrsmatrix.hh>
6#include <dune/pdelab/backend/istl/bcrspattern.hh>
7#include <dune/pdelab/backend/istl/patternstatistics.hh>
8
9namespace Dune {
10 namespace PDELab {
11 namespace ISTL {
12
13 // ********************************************************************************
14 // infrastructure for deducing the pattern type from row and column orderings
15 // ********************************************************************************
16
17 namespace {
18
19 template<typename M, typename RowOrdering, typename ColOrdering, bool pattern>
20 struct _build_bcrs_pattern_type
21 {
22 // we use void as a marker for a nonexisting subpattern
23 typedef void type;
24 };
25
26 // central TMP that is invoked recursively while traversing the ordering hierarchy
27 // and builds up the possibly nested pattern.
28 template<typename M, typename RowOrdering, typename ColOrdering>
29 struct _build_bcrs_pattern_type<M,RowOrdering,ColOrdering,true>
30 {
31
32 // descend into blocks
33 typedef typename _build_bcrs_pattern_type<
34 typename M::block_type,
35 RowOrdering,
36 ColOrdering,
37 requires_pattern<
38 typename M::block_type
39 >::value
40 >::type BlockOrdering;
41
42 // Leafs -> BCRSPattern, interior nodes -> NestedPattern
43 typedef typename std::conditional<
44 std::is_same<BlockOrdering,void>::value,
45 BCRSPattern<
46 RowOrdering,
47 ColOrdering
48 >,
49 NestedPattern<
50 RowOrdering,
51 ColOrdering,
52 BlockOrdering
53 >
54 >::type type;
55
56 };
57
58 // Wrapper TMP for constructing OrderingBase types from function spaces and for
59 // shielding user from recursive implementation
60 template<typename M, typename GFSV, typename GFSU, typename Tag>
61 struct build_bcrs_pattern_type
62 {
63
64 typedef OrderingBase<
65 typename GFSV::Ordering::Traits::DOFIndex,
66 typename GFSV::Ordering::Traits::ContainerIndex
67 > RowOrdering;
68
69 typedef OrderingBase<
70 typename GFSU::Ordering::Traits::DOFIndex,
71 typename GFSU::Ordering::Traits::ContainerIndex
72 > ColOrdering;
73
74 typedef typename _build_bcrs_pattern_type<M,RowOrdering,ColOrdering,requires_pattern<M>::value>::type type;
75 };
76
77 // Specialization for forcibly flat backends
78 template<typename M, typename GFSV, typename GFSU>
79 struct build_bcrs_pattern_type<M,GFSV,GFSU,FlatContainerAllocationTag>
80 {
81 typedef BCRSPattern<typename GFSV::Ordering, typename GFSU::Ordering> type;
82 };
83
84
85 // leaf BCRSMatrix
86 template<typename OrderingV, typename OrderingU, typename Pattern, typename Container, typename StatsVector>
87 typename std::enable_if<
88 std::is_same<typename Pattern::SubPattern,void>::value
89 >::type
90 allocate_bcrs_matrix(const OrderingV& ordering_v,
91 const OrderingU& ordering_u,
92 Pattern& p,
93 Container& c,
94 StatsVector& stats)
95 {
96 c.setSize(ordering_v.blockCount(),ordering_u.blockCount(),0);
97 c.setBuildMode(Container::random);
98
99 std::vector<typename Pattern::size_type> row_sizes(p.sizes());
100
101 typename Pattern::size_type nnz = 0;
102 typename Pattern::size_type longest_row = 0;
103
104 for (typename Pattern::size_type i = 0; i < c.N(); ++i)
105 {
106 nnz += row_sizes[i];
107 longest_row = std::max(longest_row,row_sizes[i]);
108 c.setrowsize(i,row_sizes[i]);
109 }
110 c.endrowsizes();
111
112 stats.push_back(typename StatsVector::value_type(nnz,longest_row,p.overflowCount(),p.entriesPerRow(),ordering_v.blockCount()));
113
114 for (typename Pattern::size_type i = 0; i < c.N(); ++i)
115 c.setIndices(i,p.begin(i),p.end(i));
116
117 // free temporary index storage in pattern before allocating data array in matrix
118 p.clear();
119 // allocate data array
120 c.endindices();
121 }
122
123
124 // ********************************************************************************
125 // nested matrix allocation
126 // In contrast to the older implementation, this code still uses BCRSMatrix for nested matrices,
127 // but we do not attempt to keep the pattern of those interior matrices sparse and always allocate all
128 // blocks. That greatly simplifies the code, and as those interior matrices really shouldn't be very
129 // large, any performance impact is minimal.
130 // The code also collects statistics about the pattern of the leaf BCRSMatrices and collates those stats
131 // in a row-major ordering.
132 // ********************************************************************************
133
134 // interior BCRSMatrix
135 template<typename OrderingV, typename OrderingU, typename Pattern, typename Container, typename StatsVector>
136 typename std::enable_if<
137 !std::is_same<typename Pattern::SubPattern,void>::value &&
138 requires_pattern<Container>::value
139 >::type
140 allocate_bcrs_matrix(const OrderingV& ordering_v,
141 const OrderingU& ordering_u,
142 Pattern& p,
143 Container& c,
144 StatsVector& stats)
145 {
146 c.setSize(ordering_v.blockCount(),ordering_u.blockCount(),ordering_v.blockCount()*ordering_u.blockCount());
147 c.setBuildMode(Container::random);
148
149 for (std::size_t i = 0; i < c.N(); ++i)
150 c.setrowsize(i,ordering_u.blockCount());
151 c.endrowsizes();
152
153 for (std::size_t i = 0; i < c.N(); ++i)
154 for (std::size_t j = 0; j < c.M(); ++j)
155 c.addindex(i,j);
156 c.endindices();
157
158 for (std::size_t i = 0; i < c.N(); ++i)
159 for (std::size_t j = 0; j < c.M(); ++j)
160 {
161 allocate_bcrs_matrix(ordering_v.childOrdering(i),
162 ordering_u.childOrdering(j),
163 p.subPattern(i,j),
164 c[i][j],
165 stats);
166 }
167 }
168
169 } // anonymous namespace
170
171
172
174
186 template<typename EntriesPerRow = std::size_t>
188 {
189
191 typedef std::size_t size_type;
192
195
197 template<typename Matrix, typename GFSV, typename GFSU>
198 using Pattern = typename build_bcrs_pattern_type<
199 typename Matrix::Container,
200 GFSV,
201 GFSU,
202 typename GFSV::Ordering::ContainerAllocationTag
203 >::type;
204
205 template<typename VV, typename VU, typename E>
206 struct MatrixHelper
207 {
208 typedef BCRSMatrix<
209 typename VV::GridFunctionSpace,
210 typename VU::GridFunctionSpace,
211 typename build_matrix_type<
212 E,
213 typename VV::Container,
214 typename VU::Container
215 >::type,
217 > type;
218 };
219
221
224 template<typename GridOperator, typename Matrix>
225 std::vector<Statistics> buildPattern(const GridOperator& grid_operator, Matrix& matrix) const
226 {
227 Pattern<
228 Matrix,
231 > pattern(grid_operator.testGridFunctionSpace().ordering(),grid_operator.trialGridFunctionSpace().ordering(),_entries_per_row);
232 grid_operator.fill_pattern(pattern);
233 std::vector<Statistics> stats;
234 allocate_bcrs_matrix(grid_operator.testGridFunctionSpace().ordering(),
235 grid_operator.trialGridFunctionSpace().ordering(),
236 pattern,
237 Backend::native(matrix),
238 stats
239 );
240 return stats;
241 }
242
244
249 BCRSMatrixBackend(const EntriesPerRow& entries_per_row)
250 : _entries_per_row(entries_per_row)
251 {}
252
253 private:
254
255 EntriesPerRow _entries_per_row;
256
257 };
258
259 } // namespace ISTL
260 } // namespace PDELab
261} // namespace Dune
262
263#endif // DUNE_PDELAB_BACKEND_ISTL_BCRSMATRIXBACKEND_HH
A generic dynamic dense matrix.
Definition: matrix.hh:559
Standard grid operator implementation.
Definition: gridoperator.hh:36
const GFSU & trialGridFunctionSpace() const
Get the trial grid function space.
Definition: gridoperator.hh:92
void fill_pattern(Pattern &p) const
Fill pattern of jacobian matrix.
Definition: gridoperator.hh:164
const GFSV & testGridFunctionSpace() const
Get the test grid function space.
Definition: gridoperator.hh:98
Statistics about the pattern of a BCRSMatrix.
Definition: patternstatistics.hh:14
auto max(ADLTag< 0 >, const V &v1, const V &v2)
implements binary Simd::max()
Definition: defaults.hh:79
Dune namespace.
Definition: alignedallocator.hh:11
GFSU TrialGridFunctionSpace
The trial grid function space.
Definition: gridoperatorutilities.hh:37
GFSV TestGridFunctionSpace
The test grid function space.
Definition: gridoperatorutilities.hh:40
Backend using (possibly nested) ISTL BCRSMatrices.
Definition: bcrsmatrixbackend.hh:188
PatternStatistics< size_type > Statistics
The type of the object holding the statistics generated during pattern construction.
Definition: bcrsmatrixbackend.hh:194
BCRSMatrixBackend(const EntriesPerRow &entries_per_row)
Constructs a BCRSMatrixBackend.
Definition: bcrsmatrixbackend.hh:249
std::vector< Statistics > buildPattern(const GridOperator &grid_operator, Matrix &matrix) const
Builds the matrix pattern associated with grid_operator and initializes matrix with it.
Definition: bcrsmatrixbackend.hh:225
typename build_bcrs_pattern_type< typename Matrix::Container, GFSV, GFSU, typename GFSV::Ordering::ContainerAllocationTag >::type Pattern
The type of the pattern object passed to the GridOperator for pattern construction.
Definition: bcrsmatrixbackend.hh:203
std::size_t size_type
The size type of the BCRSMatrix.
Definition: bcrsmatrixbackend.hh:191
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Dec 21, 23:30, 2024)