DUNE PDELab (git)
qkdg.hh
38 : public Dune::PDELab::SimpleLocalFiniteElementMap< Dune::QkDGLagrangeLocalFiniteElement<D,R,k,d>,d>
90 : public Dune::PDELab::SimpleLocalFiniteElementMap< Dune::QkDGLegendreLocalFiniteElement<D,R,k,d>,d>
Unique label for each type of entities that can occur in DUNE grids.
Definition: type.hh:114
Definition: opbfem.hh:21
static constexpr std::size_t order()
return order of polynomial basis
Definition: qkdg.hh:218
static constexpr QkDGBasisPolynomial polynomial()
return type of polynomial basis
Definition: qkdg.hh:212
static constexpr std::size_t order()
return order of polynomial basis
Definition: qkdg.hh:72
static constexpr QkDGBasisPolynomial polynomial()
return type of polynomial basis
Definition: qkdg.hh:66
static constexpr QkDGBasisPolynomial polynomial()
return type of polynomial basis
Definition: qkdg.hh:118
static constexpr std::size_t order()
return order of polynomial basis
Definition: qkdg.hh:124
static constexpr std::size_t order()
return order of polynomial basis
Definition: qkdg.hh:176
static constexpr QkDGBasisPolynomial polynomial()
return type of polynomial basis
Definition: qkdg.hh:170
simple implementation where all entities have the same finite element
Definition: finiteelementmap.hh:101
bool gt(const T &first, const T &second, typename EpsilonType< T >::Type epsilon)
test if first greater than second
Definition: float_cmp.cc:158
auto lagrange()
Create a pre-basis factory that can create a Lagrange pre-basis.
Definition: lagrangebasis.hh:477
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:462
constexpr std::integral_constant< std::size_t, sizeof...(II)> size(std::integer_sequence< T, II... >)
Return the size of the sequence.
Definition: integersequence.hh:75
std::size_t fixedSize
The number of data items per index if it is fixed, 0 otherwise.
Definition: variablesizecommunicator.hh:264
|
Legal Statements / Impressum |
Hosted by TU Dresden |
generated with Hugo v0.111.3
(Jan 8, 23:30, 2025)